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1 A slight reformulation of online learning

High level idea: suppose we have a online learning algorithm that has a regret guarantee against any sequences
of examples, then when it is run on a sequence of examples iid from D, the intermediate predictors it outputs
will have good statistical guarantees. Specifically, we will show that the average excess loss of these predictors
will be small if the regret is small.

First, let us describe a simple reformulation of online learning. Instead of asking the learner to make
a prediction after seeing the context information of an example, we directly ask the learner to output a
predictor. These two formulations are equivalent (the latter is called skolemization), in that predictor ht at
round t can be thought of as a strategy to respond to every possible context xt at that round.

For example, in online classification where A = {±1}, ht is a binary classifier, and `t(h) = 1(h(xt) 6= yt)
is the mistake indicator of classifier h on example (xt, yt).

Algorithm 1 Online learning: reformulation

Require: Context space X , action space A, hypothesis class H.
for timesteps t = 1, 2, . . . , T : do

Show predictor ht : X → A.
Receive loss `t, where for every predictor h, `t(h) ∈ [0,M ] is the instaneous loss of h at round t.

end for
Goal: minimize cumulative regret Reg(T,H) =

∑T
t=1 `t(ht)−minh∈H

∑T
t=1 `t(ht).

2 Online to batch conversion

Suppose that we have an online learning algorithm A that achieves a small cumulative regret, that is,
Reg(T,H) ≤ R(T ); for example, if H is finite, one can run (variants of) Hedge on H to get a regret
guarantee R(T ) = O(M

√
ln |H|T ).

Let us consider the statistical learning setting, where we have a distribution D over loss functions. To
evaluate the performance of a predictor h on distribution D, we use the familiar expected loss, that is,
L(h,D) = E`∼D `(h).

Consider running algorithm A, with losses `t iid from D. We would like to show that, the classifiers
{h1, . . . , hT } generated by A has a low average excess loss with respect to D. Specifically, we have the
following theorem.

Theorem 1 ( [1]). Suppose the setting is as described above. Then,

1

T
E

 T∑
t=1

L(ht, D)

 ≤ min
h′∈H

E[L(h′, D)] +
R(T )

T
. (1)
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where the expectation is wrt the randomness of both the algorithm A and the losses drawn from D. Further-
more, with probability 1− δ,

1

T
E

 T∑
t=1

L(ht, D)

 ≤ min
h′∈H

E[L(h′, D)] +
R(T )

T
+M

√
8 ln 4

δ

T
. (2)

Remark. In many online learning settings, R(T ) is Ω(
√
T ), and therefore the extra

√
1
T factor paid in

concentration is dominated by R(T )
T . If R(T )’s are of smaller order, then this theorem no longer provides the

tightest conversion result; in these settings, more advanced concentration inequalities such as Bernstein’s
and Freedman’s Inequalities provide better results; but this is beyond the scope of this course.

Proof. Let us first write down the online regret guarantee on loss sequence {`t}Tt=1:

T∑
t=1

`t(ht) ≤ min
h′∈H

T∑
t=1

`t(h
′) + R(T ). (3)

Proof of Equation (1). Both sides of the inequality involves random variables. As the above inequality
holds for any random seed, the expectation of the left hand side is also at most the expectation of the right
hand side. By linearity of expectation, E

∑T
t=1 `t(ht) =

∑T
t=1 E `t(ht). Now, define Ht−1 as the collection of

random variables up to t− 1, along with ht, that is Ht−1 = (h1, `1, . . . , ht−1, `t−1, ht).
Note that conditioned on Ht−1, the only randomness in `t(ht) comes from the fresh loss `t. Consequently,

E
[
`t(ht)|Ht−1

]
= E`∼D `(ht) = L(ht, D).

By the law of iterated expectation, E[`t(ht)] = E
[
E
[
`t(ht)|Ht−1

]]
= E[L(ht, D)].

Therefore, the expectation of the left hand side is
∑T
t=1 E[

∑
L(ht, D)].

What’s the expectation of the first term on the right hand side? In fact we have seen this in statistical
learning. Note that f(x) = min(x1, . . . , xn) is a concave function. By Jensen’s Inequality,

E

min
h′∈H

T∑
t=1

`t(h
′)

 ≤ min
h′∈H

E[

T∑
t=1

`t(h
′)] = T min

h′∈H
L(h′, D).

Equation (1) is shown by combining the above observations, taking expectations, and dividing both sides by
T .

Proof of Equation (2). Define Xt = `t(ht)−L(ht, D). Observe that by the above discussion, {Xt}Tt=1 is

a martingale difference sequence with respect to history {Ht}Tt=1. Moreover, |Xt| ≤ M , by our assumption
that `t(h) ∈ [0,M ] for all t and h. Therefore, with probability 1− δ/2,∣∣∣∣∣∣

T∑
t=1

Xt

∣∣∣∣∣∣ =

T∑
t=1

`t(ht)−
T∑
t=1

L(ht, D) ≤M
√

2T ln
4

δ
. (4)

In addition, we can upper bound minh′∈H
∑T
t=1 `t(h

′) as follows. Denote by h? = argminh∈H L(h,D).
We have that with probability 1− δ/2,

T∑
t=1

`t(h
?) ≤ TL(h?, D) +M

√
2T ln

4

δ
. (5)
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Consequently,

min
h′∈H

T∑
t=1

`t(h
′) ≤

T∑
t=1

`t(h
?)

≤ TL(h?, D) +M

√
2T ln

4

δ

= T min
h′∈H

L(h′?, D) +M

√
2T ln

4

δ
(6)

holds with probability 1−δ/2. Here the first inequality is from the suboptimality of h?; the second inequality
is from Equation (5); the third inequality uses the definition of h?.

Now, combining Equations (3), (4), (6) with union bound, and divide both sides by T , we get Equa-
tion (2) happens with probability 1− δ.

Remark. There are two ways of utilizing the guarantee in Equation (2) by returning a predictor h̃ that
has excess loss guarantees:

1. Let h̃ be an element chosen uniformly at random from {h1, . . . , hT }. Note that we have

Eh̃∼U({h1,...,hT }) L(h̃, D) =
1

T

T∑
t=1

L(ht, D).

Therefore, the expected loss of h̃ has the same upper bound as 1
T

∑T
t=1 L(ht, D) in (2).

2. Suppose that `(h) is convex with respect to h with probability 1 for ` ∼ D; specifically, `(αh1 +
(1 − α)h2) ≤ α`(h1) + (1 − α)`(h2) for all h1, h2 and α ∈ [0, 1]; for example, `(h) = (h(x) − y)2 or

`t(h) = |h(x)− y|. Denote by h̄ = 1
T

∑T
t=1 ht. By Jensen’s Inequality, we have:

L(h̄, D) ≤ 1

T

T∑
t=1

L(ht, D).

Therefore, the expected loss of h̄ has the same upper bound as 1
T

∑T
t=1 L(ht, D) in (2).
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A Azuma-Hoeffding’s Inequality

The fact below has many applications for sequential decision applications. We consider a martingale differ-
ence sequence, a sequence of random variables that are only ”weakly dependent”, and show that they exhibit
concentration behavior similar to independent random variables.

Definition 1. X1, . . . , XT is a martingale difference sequence with respect to history H1, . . . ,HT , if:

1. Ht’s are nested: H1 ⊂ H2 ⊂ . . . ⊂ HT .

2. Xt can be written as a function of Ht.

3. E
[
Xt|Ht−1

]
= 0.

3



Remark. There is a more generation definition of martingale difference sequence in probability theory,
defined using filtrations and σ-algebras. We encourage the interested reader to consult standard probability
theory textbooks.

It can be checked that a set of iid zero mean random variables is a martingale difference sequence.
Moreover, it can be checked that if X1, . . . , XT is a martingale difference sequence, then E[XiXj ] =

E
[
E
[
Xi|Hj

]
Xj

]
= 0, i.e. they are pairwise uncorrelated. A canonical example of a martingale differ-

ence sequence is the wealth increment at a fair betting game: suppose Zt’s are iid Rademacher random
variables, encoding winning (+1) or losing (−1) of a gambler at round t. Let Mt = f(Z1, . . . , Zt−1) · Zt,
where f encodes the bet the gambler placed at round t. It can be checked that {Mt}Tt=1 is a martingale

difference strategy wrt history
{
Ht = (Z1, . . . , Zt)

}T
t=1

.

Fact 1 (Azuma-Hoeffding’s Inequality). If X1, . . . , XT is a martingale difference sequence, and for every t,
with probability 1, |Xt| ≤M . Then with probability 1− δ,∣∣∣∣∣∣

T∑
t=1

Xt

∣∣∣∣∣∣ ≤M
√

2T ln
2

δ
.

Note that the above inequality generalizes the classical Hoeffding’s Inequality. Intuitively, if a gambler
bets adaptively and conservatively (each timestep her wager is at most M), then the typical value of her
cumulative wealth change will be around ±O(M

√
T ), as opposed to the maximum possible value ±O(MT ).
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