
CSC 665: Online classification

Chicheng Zhang

November 26, 2019

1 Online learning

1. Sequential decision making problem

2. Different from statistical learning, here training and test are interleaved

3. Has many applications, e.g. spam filtering, (personalized) product recommendation, experimental
design, sequential investment, etc

General setup:

Algorithm 1 Online learning: general setup

Require: Context space X , action space A.
for timesteps t = 1, 2, . . . , T : do

(Optional) Observe context xt ∈ X
Take action at ∈ A
Receive feedback bt (that reveals information about loss `t)

end for
Goal: minimize cumulative loss

∑T
t=1 `t(at)

Examples:

1. Spam filtering (online classification).

(a) Each xt (in X = Rd) denotes the feature representation of an email.

(b) Use A = {±1}: +1 denotes non-spam, −1 denotes spam.

(c) Feedback bt = yt: true label of email

(d) Loss: `t(a) = 1(a 6= yt) - classification error

2. Spam filtering, modified (partial information online classification). Same as the setup before, except
that the feedback model is different:

bt =

{
yt at = −1

⊥ at = +1

In words, if an email is classified as non-spam, then it goes to the inbox and user marks spam if
necessary; however if an email is classified as spam, then the user does not check the spam folder and
never provided feedback on it.

3. Product recommendation (multi-armed bandits).

(a) No context

(b) A = {1, . . . ,K}: K products

1

(c) Loss: `t(a) - the cost of recommending product a to user t (characterizing user’s preferences on
all products)

(d) Feedback: bt = `t(at) - user’s preferences on product recommended (but not other K−1 products)

4. Personalized product recommendation (contextual bandits). Same as the setup before, except that a
context xt is given at each timestep t, that reveals “charateristics” about user t. The goal is to utilize
the contexts to make better product recommendations.

Some terminlogies:

1. Full information vs. Partial information: if bt reveals the true loss function `t, then it is called
full-information setting; otherwise it is called partial-information setting. Both settings have many
applications in practice.

2. Stochastic vs. Adversarial: if (xt, `t)’s are iid, then it is called the stochastic setting (where techniques
in statistical learning can potentially carry over); Adversarial setting refers to the setup where we don’t
have assumptions on the data generation process.

2 Online classification

Convention: as A = Y = {±1}, we often write at as ŷt. The goal is to minimize the cumulative number of

classification errors,
∑T

t=1 1(ŷt 6= yt).
As a starting point, let’s consider a simple setting when H is finite, and we are in the realizable setting:

there exists a classifier h? in H that agrees with all the examples. How can we design a learning algorithm
that makes a small number of mistakes?

The consistency algorithm: a first trial. One plausible idea is to utilize the consitency algorithm (or
ERM algorithm) we studied in statistical learning: at time t, define version space Vt =

{
h ∈ H : h(xs) = ys∀s ≤ t− 1

}
.

The name version space comes from the fact that this set of classifiers gets constantly updated, therefore
having “versions” indexed by timesteps. The algorithm then selects a classifier ht ∈ Vt and uses that to
make prediction: ŷt = ht(xt).

Theorem 1. The consistency algorithm makes |H| − 1 mistakes (regardless of the length of time horizon
T).

Proof. First, by the definition of version space, and the realizability assumption, the algorithm maintains
the invariant that h? ∈ Vt.

Second, let Mt = 1(ŷt 6= yt) be the mistake indicator at time t. We claim that Mt ≤ |Vt| − |Vt+1|. We
look at two cases:

1. if Mt = 0, as Vt+1 ⊂ Vt, the right hand side is positive, thus the inequality is true.

2. if Mt = 1, note that ht will be excluded from Vt. This implies that |Vt+1| − |Vt| ≥ 1.

Define potential Φt = |Vt|; in this notation, Mt ≤ Φt − Φt+1. Summing over all round t from 1 to T , we
have

T∑
t=1

≤ Φ1 − ΦT+1 ≤ Φ1 = |H|.

Can we design a better algorithm for online binary classification under realizability? It turns out that
using a more carefully designed prediction strategy we can do much better, reducing the mistake bound from
linear in |H| to only logarithmic.

2

The halving algorithm. Same as the consistency algorithm, Halving will also keep track of version space,
defined in the same way. At timestep t, observe that example xt divides the version space Vt into two parts:
V +
t =

{
h ∈ Vt : h(xt) = +1

}
, and V −t =

{
h ∈ Vt : h(xt) = −1

}
. We know that at the end of round t, one of

them would become the update version space Vt+1.
The halving algorithm makes prediction as follows:

ŷt =

{
+1 |V +

t | ≥ |Vt|/2,

−1 otherwise,

which is equivalent to a majority vote over classifiers in Vt (tie broken in favor of +1).
What is the advantage of this new prediction strategy? We claim that Mt ≤ log |Vt| − log |Vt+1|. Why?

We also conduct a case analysis on Mt:

1. If Mt = 0, the right hand side is log |Vt|− log |Vt+1|, which is at least 0; therefore the inequality is true.

2. If Mt = 1, then yt = −ŷt. It can be seen that from the definition of ŷt, Vt+1 = V yt

t = V −ŷt

t is the
minority class, implying that |Vt+1| ≤ |Vt|/2. The claimed inequality is shown by taking logarithms on
both sides.

Define potential Φt = log |Vt|; in this notation, Mt ≤ Φt − Φt+1. Summing over all round t from 1 to T ,
we have

T∑
t=1

≤ Φ1 − ΦT+1 ≤ Φ1 = log |H|.

To summarize, we have the following theorem.

Theorem 2. The halving algorithm makes log |H| mistakes (regardless of the length of time horizon T).

3 Mistake bound model and the minimax analysis of realizable
online learning

Definition 1. 1. Algorithm A is said to acheive a mistake bound B with hypothesis class H, if for any
sequence of examples S realizable with respect to H, MA(S), the cumulative number of mistakes made
by A on S is at most B.

2. H is online learnable if there exists an algorithm A such that A achieves a finite mistake bound on H.

In light of Theorem 1 or Theorem 2, we have the following simple fact.

Corollary 1. Any finite hypothesis class H is online learnable.

What happens for infinte hypothesis classes? Can we develop similar capacity measure like VC dimension
that measures the fundamental complexity of online learning? Imaging online classification as a game between
the learner and the environment, where the learning algorithm makes online predictions at every timestep
that tries to minimize the number of mistakes, while the environment shows examples sequentially to “trick”
the learner to make as many mistakes, without violating the realizability assumption. We can formulate the
design of online classification algorithms as the following optimization problem:

min
A

max
S:S realizable by H

MA(S).

In other words, we would like to design an algorithm, A, that has the smallest number of worst case
mistakes (where every sequence of example realizable by H is a “case”).

To analyze this, let us first look at the flip side: can we design a strategy of the environment to enforce any
learner to make a lot of mistakes? To study this, we need the concept called mistake trees. (See handwritten
notes for details.)

3

