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1 Error decomposition in machine learning

Setup:

1. distribution D,

2. training examples S drawn iid from D

3. learning algorithm A that outputs ĥ from hypothesis class H, based on S

Question: what are the factors that contribute to the generalization error of ĥ?
Denote by h′ , arg minh∈H err(h, S), h? , arg minh∈H err(h,D). We have the following theorem.

Theorem 1. With probability 1− δ,

err(ĥ, D) ≤ εgen + εopt + err(h?, D) +

√
ln 1

δ

2m
.

where εgen = err(ĥ, D) − err(ĥ, S) is called the generalization gap, εopt = err(ĥ, S) − err(h′, S) is called the
optimization error.

Proof. Observe that

err(ĥ, D) = [err(ĥ, D)− err(ĥ, S)] + [err(ĥ, S)− err(h?, S)] + [err(h?, S)− err(h?, D)] + err(h?, D).

note that the first term is εgen; the second term is at most εopt, as err(h′, S) ≤ err(h?, S); the third term is

at most

√
ln 1
δ

2m with probability 1− δ by Hoeffding’s inequality.

Remarks:

1. err(h?, D) is called the bias of the hypothesis class H. A more expressive H gives a smaller bias.

2. When m is reasonably large, then

√
ln 1
δ

2m can usually be omitted.

3. The bound can be loose: aside from application of Hoeffding’s inequality, the only other place we use
inequality is bounding err(h′, S) using err(h?, S) - but the gap between them can be large: if the data

is highly noisy and H is too expressive, then err(ĥ, S) can be close to zero, whereas err(h?, S) can be
large.
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Important special case: ERM. Suppose A is ERM wrt H. In this case, ĥ = h′, therefore εopt is zero.

Moreover, as we have seen before, we can bound εgen by suph∈H err(ĥ, D)− err(ĥ, S), which in turn can be

controlled by O(

√
ln

|H|
δ

m ) using uniform convergence arguments. We have that with probability 1− δ:

err(ĥ, D) ≤ err(h?, D) + 2

√
ln 2|H|

δ

2m
.

There are two possible factors that contribute to ĥ’s error:

1. The bias of H.

2. The “complexity” of H: an upper bound of the generalization gap of ĥ.

This is called the bias-complexity tradeoff. Say H ⊂ H′, then H′ has a smaller bias, while having a larger
complexity.

1. Underfitting: H is too restricted so that the bias is too large. This can sometimes be caught by
observing that err(ĥ, S) is too large, as err(ĥ, S) ≤ err(h?, S) ≈ err(h?, D).

2. Overfitting: H is too expressive so that the generalization gap is too large. This cannot be directly
caught by monitoring the training error rate of ERM, however, it can be caught by maintaining a
separate validation set. Suppose we have a fresh validation set V , then err(ĥ, D) ≈ err(ĥ, V ) by

Hoeffding’s inequality, so εgen ≈ err(ĥ, S)− err(ĥ, V ).

2 How to choose hypothesis class H in practice?

1. PAC learning theory deals with learning a fixed hypothesis class H

2. In practice (exploratory data analysis), it is often not the case that analysts “commits” to a fixed
learning algorithm - one often tries different learning algorithms for different hypothesis classes (e.g.
SVM for training linear classifiers with different regularization parameters, ID3 for training decision
trees with different pruning strategies, backprop for training neural nets with different learning rates
/ weight decay, etc) to see which one performs the best.

3. How shall we choose the learning algorithm to use in practice?

4. For simplicity, let us consider only algorithm that are ERMs over hypothesis classes.

Given hypothesis classes H1, . . . ,Hk. For every i, define h?i = arg minh∈H err(h,D) as the optimal

classifier on Hi; ĥi = arg minh∈Hi err(h, S) is the output of ERM over Hi. How do we select which ĥi to
pick to have low generalization error? Can we certain model selection criteria via the error decomposition
theorem?

Idea 1: validation. As discussed before, a fresh validation set can help us provide good evaluation on

the trained classifiers. Suppose V is a validation set of size n. Let Ĥ =
{
ĥ1, . . . , ĥk

}
be the set of ERMs.

Define ĥ = arg minh∈Ĥ err(h, V ) as the ERM over the ERMs. We have the following simple theorem:

Theorem 2. With probability 1− δ,

err(ĥ, D) ≤ min
i∈{1,...,k}

err(ĥi, D) + 2

√
ln 4

δ

2n

≤ min
i∈{1,...,k}

err(h?i , D) + 2

√
ln 4k|Hi|

δ

2m
+ 2

√
ln 4

δ

2n
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The proof of this theorem follows from simple analysis of ERMs, which is left as an exercise.
Suppose n = Θ(m), then the third term is dominated by the second term (complexity of Hi), implying

that ĥ’s error upper bound is almost the same as the error upper bound of doing ERM over Hi (had we
known the “best” i - the one that has the best bias-complexity tradeoff).

Idea 2: structural risk minimization (penalized ERM). There is an alternative approach (inspired
by theory) that achieves roughly the same type of error guarantee as validation. Note that selecting i that

minimizes err(ĥi, S) may be a terrible idea, as ĥi may overfit. However, we can do the following fix: we add
penalty that depends on Hi’s complexity, that is,

î = arg min
i∈{1,...,k}

err(ĥi, S) + 2

√
ln 4k|Hi|

δ

2m
,

and define the final output as ĥ = ĥî. Note that similar to SVM, this can be interpreted as regularized loss
minimzation - for different classifiers, in addition to minimizing its empirical error, we also add a penalty
that depends on which hypothesis class it lies in.

As we will see next, this approach implicitly minimizes the generalization error bounds on all ĥi’s.

Theorem 3. With probability 1− δ,

err(ĥ, D) ≤ min
i∈{1,...,k}

err(ĥi, D) + 2

√
ln 4k|Hi|

δ

2m


≤ min

i∈{1,...,k}

err(h?i , D) + 4

√
ln 4k|Hi|

δ

2m

 .

The first inequality is called an oracle inequality, in that it relates the performance of a learned classifier
to a classifier output by some ideal learning algorithm (that relies on information unavailable in reality). To

see this, note that we can define i0 that minimizes err(ĥi, D)+2

√
ln

4k|Hi|
δ

2m , which is unavailable as err(ĥi, D)

cannot be exactly computed. The theorem tries to relate the generalization error of ĥ to that of ĥi0 .

Proof. By Hoeffding’s inequality and union bound, with probability 1− δ,

| err(h, S)− err(hi, D)| ≤

√
ln 2k|Hi|

δ

2m
,∀h ∈ Hi. (1)

Note that this is a non-uniform convergence statement: classifiers in larger hypothesis classes’s error con-
centration are controlled more loosely.

Therefore, for every i in {1, . . . , k},

err(ĥ, D) = err(ĥî, D) ≤ err(ĥî, S) +

√
ln

4k|Hî|
δ

2m

≤ err(ĥi, S) +

√
ln 4k|Hi|

δ

2m

≤ err(ĥi, D) + 2

√
ln 4k|Hi|

δ

m

≤ err(h?i , D) + 4

√
ln 4k|Hi|

δ

m
.
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where the first inequality is by error concentration in Hî; the second inequality is by the optimality of î; the
third inequality is from by error conentration in Hi; where the last step is by the familiar analysis of ERM
on Hi given uniform convergence (1) holds. The theroem is concluded by noting that the above holds for all
i.
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