CSC 665: Information-theoretic lower bounds of PAC sample complexity

Chicheng Zhang

September 30, 2019

In the last lecture, we show that finite VC dimension is sufficient for distribution-free agnostic PAC learnability. For a hypothesis class \mathcal{H} of VC dimension d, for all data distributions, ERM has an agnostic PAC sample complexity $O\left(\frac{1}{\epsilon^2}\left(d\ln\frac{1}{\epsilon} + \ln\frac{1}{\delta}\right)\right)$.

In this lecture, to complement the learnability result, given \mathcal{H} of VC dimension d, we show that any learning algorithm must consume at least $\Omega\left(\frac{1}{\epsilon^2}(d+\ln\frac{1}{\delta})\right)$ samples to achieve agnostic PAC learning guarantee. Moreover, if \mathcal{H} has infinite VC dimension, any learning algorithm is unable to achieve distribution-free PAC learning. The latter fact implies that finite VC dimension is necessary for distribution-free PAC learnability.

Theorem 1. For any hypothesis class \mathcal{H} such that $VC(\mathcal{H}) \geq d$, and any learning algorithm \mathcal{A} , and any $\epsilon, \delta \in (0, \frac{1}{8})$, there exists a distribution D over $\mathcal{X} \times \{-1, +1\}$, such that when a set S of $m = \frac{1}{16\epsilon^2} (\frac{d}{200} + \ln \frac{1}{16\delta})$ examples is drawn iid from D, with probability at least δ ,

$$\operatorname{err}(h, D) - \min_{h \in \mathcal{H}} \operatorname{err}(h, D) > \epsilon,$$

where $\hat{h} = \mathcal{A}(S)$ is the output of learning algorithm.

Remark. Note well the order of quantifiers on algorithm \mathcal{A} and distribution D. It may be tempting to show a theorem that says "for every \mathcal{H} , ϵ and δ , there is a distribution D such that for any algorithm \mathcal{A} , \mathcal{A} fail to satisfy (ϵ, δ) -agnostic PAC learning guarantee." Unfortunately this is impossible. Suppose the distribution D is chosen, then there is a trivial algorithm \mathcal{A} that satisfies the agnostic PAC learning guarantee - outputting $h^* = \operatorname{argmin}_{h \in \mathcal{H}} \operatorname{err}(h, D)$.

We show the theorem in the following two lemmas.

Lemma 1. Suppose the setting is the same as that of Theorem 1. There exists a distribution D such that, if m, the size of S is at most $\frac{1}{8\epsilon^2} \ln \frac{1}{16\delta}$, then with probability at least δ ,

$$\operatorname{err}(\hat{h}, D) - \min_{h \in \mathcal{H}} \operatorname{err}(h, D) > \epsilon.$$

Lemma 2. Suppose the setting is the same as that of Theorem 1. There exists a distribution D such that, if m, the size of S is at most $\frac{d}{1600\epsilon^2}$, then with probability at least 1/4,

$$\operatorname{err}(\hat{h}, D) - \min_{h \in \mathcal{H}} \operatorname{err}(h, D) > \epsilon.$$

To see why the two lemmas together imply the theorem, consider two cases. When $\frac{d}{200} \ge \ln \frac{1}{16\delta}$, by Lemma 2, \mathcal{A} will fail to satisfy agnostic PAC guarantee with $m = \frac{1}{16\epsilon^2} (\frac{d}{200} + \ln \frac{1}{16\delta}) \le \frac{d}{1600\epsilon^2}$ training examples. Similarly, when $\frac{d}{200} < \ln \frac{1}{16\delta}$, by Lemma 1, \mathcal{A} will fail to satisfy agnostic guarantee with $m = \frac{1}{16\epsilon^2} (\frac{d}{200} + \ln \frac{1}{16\delta}) \le \frac{1}{3\epsilon^2} \ln \frac{1}{16\delta}$ training examples.

¹In fact, the sample complexity can be sharpened to $O\left(\frac{1}{\epsilon^2}(d+\ln\frac{1}{\delta})\right)$ by an advanced technique called chaining (see Section 27.2 of [2]).

1 Proof of Lemma 1: an introduction to Le Cam's method

Le Cam's method [4] is a systematic way to prove information theoretic lower bounds. It is based on the following thought experiment. Suppose we are given two possible distributions $P_i, i \in \{\pm 1\}$ over the observation space \mathcal{O} (where each draw from the distribution results in an observation \mathcal{O} in \mathcal{O}). Our task is to guess the identity of *i* given \mathcal{O} , i.e. output a \hat{i} based on \mathcal{O} (we can think of $\hat{i} = f(\mathcal{O})$, where *f* encodes our thought process). If P_{+1} and P_{-1} are close, then there exists at least one distribution P_i , under which our guess \hat{i} would be wrong with decent probability.

(It may be helpful to think of P_{+1} and P_{-1} as two possible "scientific hypotheses", and O is an scientific experiment we conduct. Our task is to tell which hypothesis is the ground truth.) If you are familar with hypothesis testing in statistics, this is exactly the same setting: we would like to show that no matter what test we use, the sum of type I and type II errors would be large so long as the two hypotheses are close to each other.

We will use the shorthand that \mathbb{P}_i (resp. \mathbb{E}_i) denotes $\mathbb{P}_{O \sim P_i}$ (resp. $\mathbb{E}_{O \sim P_i}$).

Lemma 3 (Le Cam's method). Suppose f is a mapping from \mathcal{O} to $\{-1, +1\}$. Then for at least one of i in $\{-1, +1\}$,

$$\mathbb{P}_{i}(f(O) \neq i) = \mathbb{E}_{i}\mathbf{1}(f(O) \neq i) \ge \frac{1}{2}\sum_{o \in \mathcal{O}} \min(P_{-1}(o), P_{+1}(o)).$$

Remark. The right hand side is often written as $||P_{-1} \wedge P_{+1}||_1$, measuring the similarity between two distributions. Generally, if we have two distributions Q_1 and Q_2 , we have:

$$\begin{aligned} \|Q_1 \wedge Q_2\|_1 &= \sum_{o \in \mathcal{O}} \min \left(Q_1(o), Q_2(o) \right) \\ &= \sum_{o \in \mathcal{O}} \frac{Q_1(o) + Q_2(o)}{2} - \frac{|Q_1(o) - Q_2(o)|}{2} \\ &= 1 - \sum_{o \in \mathcal{O}} \frac{|Q_1(o) - Q_2(o)|}{2} \\ &= 1 - \frac{1}{2} \|Q_1 - Q_2\|_1. \end{aligned}$$

As a sanity check, if $Q_1 = Q_2$, $||Q_1 \wedge Q_2||_1 = 1$ and $||Q_1 - Q_2||_1 = 0$; on the other extreme, if Q_1 and Q_2 have disjoint support, then $||Q_1 \wedge Q_2||_1 = 0$ and $||Q_1 - Q_2||_1 = 2$.

Suppose I is chosen uniformly at random from $\{\pm 1\}$. What is the function f^* that minimizes $\mathbb{P}(f(O) \neq I)$? Think of the problem as a binary classification problem, where (feature, label) pair (O, I) comes from a joint distribution we have full knowledge about. Given O, we would like to classify O as either +1 or -1 to minimize the error.

If you have studied probabilistic machine learning, you now can see that f^* is the Bayes classifier:

$$f^{\star}(o) = \begin{cases} +1 & \mathbb{P}(I = +1 | O = o) \ge \frac{1}{2} \\ -1 & \text{otherwise} \end{cases}$$

Why does this function minimize the error rate? Observe that for any function f,

$$\mathbb{P}(f(O) \neq I) = \sum_{o \in \mathcal{O}} \mathbb{P}(O = o) \left(\mathbb{P}(I = -1 | O = o) \mathbf{1}(f(o) = +1) + \mathbb{P}(I = -1 | O = o) \mathbf{1}(f(o) = -1) \right) \right),$$

if we would like to choose f that minimize $\mathbb{P}(f(O) \neq I)$, it suffices for us to decide for each o, whether f(o) should take value -1 or +1. Therefore, the f that minimizes the error will choose to predict $\operatorname{argmax}_{i \in \{\pm 1\}} \mathbb{P}(I = i | O = o)$, which is equivalent to $f^*(o)$.

This means that we can calculate $\mathbb{P}(f(O) \neq I)$ explicitly. In addition,

$$\mathbb{P}(f(O) \neq I) = \frac{1}{2} \left(\mathbb{P}_{+1}(f(O) \neq +1) + \mathbb{P}_{-1}(f(O) \neq -1) \right) \le \max_{i} \mathbb{P}_{i}(f(O) \neq i),$$
(1)

so a lower bound of $\mathbb{P}(f(O) \neq I)$ implies a lower bound of $\max_i \mathbb{P}_i(f(O) \neq i)$.

Let us now formalize the ideas above.

Proof. Suppose I is chosen uniformly from $\{\pm 1\}$, and given I, O is drawn from \mathbb{P}_I . Then for any function f,

$$\mathbb{P}(f(O) \neq I) \geq \mathbb{P}(f^{\star}(O) \neq I) \\
= \frac{1}{2} \left(\mathbb{P}_{-1}(f^{\star}(O) = +1) + \mathbb{P}_{+1}(f^{\star}(O) = -1) \right) \\
= \frac{1}{2} \left(\sum_{o:P_{+1}(o) \geq P_{-1}(o)} P_{-1}(o) + \sum_{o:P_{-1}(o) > P_{+1}(o)} P_{+1}(o) \right) \\
= \frac{1}{2} \sum_{o \in \mathcal{O}} \min \left(P_{-1}(o), P_{+1}(o) \right) \quad \Box$$

Le Cam's method is a statement about hypothesis testing. How can Le Cam's method be useful in sample complexity lower bounds? It turns out that we can construct a pair of learning problems, such that in order to ensure PAC learning on both problems, solving a variant of hypothesis testing is *necessary*.

The construction. Suppose that x_0 is an unlabeled example, \mathcal{H} contains two classifiers h_{+1} and h_{-1} , such that $h_i(z_0) = i$ for both $i \in \{-1, +1\}$. Define an unlabeled distribution D_X such that $\mathbb{P}_{D_X}(x = z_0) = 1$. For $i \in \{\pm 1\}$, define

$$D_i(y|z_0) = \begin{cases} \frac{1}{2} + i\epsilon, & y = +1, \\ \frac{1}{2} - i\epsilon, & y = -1, \end{cases}$$

In other words,

$$D_i(y|z_0) = \begin{cases} \frac{1}{2} + \epsilon, & y = i, \\ \frac{1}{2} - \epsilon, & y = -i \end{cases}$$

In addition, D_{+1} (resp. D_{-1}) are specified by the marginal D_X and the $D_{+1}(y|x)$ (resp. $D_{-1}(y|x)$) described above.

Here, we can think of the observations O are the training examples S, where given i, S is drawn from D_i^m (m iid draws from distribution D_i).

Lemma 4. Suppose training sample size $m \leq \frac{1}{8\epsilon^2} \ln \frac{1}{16\delta}$. Then, there exists $i \in \{-1, +1\}$ such that

$$\mathbb{P}_i\left(\operatorname{err}(\hat{h}, D_i) - \min_{h \in \mathcal{H}} \operatorname{err}(h, D_i)\right) > \delta.$$

Proof. We show the lemma in three steps.

Step 1: reducing PAC learning to hypothesis testing. \hat{h} induces a "guess" on the hypothesis index *i*, that is,

$$i = h(z_0).$$

Note that as $\hat{h} = \mathcal{A}(S)$ is a function of training examples S, \hat{i} can also be written as a function of S - we use f to denote that function.

For a classifier h, it is easy to see its error rate on D_i is: $\operatorname{err}(h, D_i) = \frac{1}{2} - \epsilon + 2\epsilon \mathbf{1}(h(z_0) \neq i)$. In addition, under D_i , $\min_{h \in \mathcal{H}} \operatorname{err}(h, D_i) = \frac{1}{2} - \epsilon$, attained by a classifier $h \in \mathcal{H}$ such that $h(z_0) = i$. This implies the following relationship on the events:

$$\left\{f(S) \neq i\right\} = \left\{\hat{h}(z_0) \neq i\right\} \subseteq \left\{\operatorname{err}(\hat{h}, D_i) - \min_{h \in \mathcal{H}} \operatorname{err}(h, D_i) > \epsilon\right\}$$

So proving the lemma reduces to showing that for at least one *i* in $\{\pm 1\}$, $\mathbb{P}_i(f(S) \neq i) > \delta$, as this would immediately imply $\mathbb{P}_i(\operatorname{err}(\hat{h}, D_i) - \min_{h \in \mathcal{H}} \operatorname{err}(h, D_i) > \epsilon) \geq \mathbb{P}_i(f(S) \neq i) > \delta$.

Step 2: applying Le Cam's method. Invoking Lemma 3, we have that there exists i, $\mathbb{P}_i(\hat{I} \neq i) \geq \frac{1}{2} \|P_{-1} \wedge P_{+1}\|_1$. We shall show a lower bound on the right hand side.

$$||P_{-1} \wedge P_{+1}||_{1} = \frac{1}{2} \sum_{o \in \mathcal{O}} \min(P_{-1}(o), P_{+1}(o))$$

$$= \frac{1}{2} \sum_{S \in (\{z_{0}\} \times \{\pm 1\})^{n}} \min(P_{-1}(S), P_{+1}(S))$$
(2)

Step 3: reducing distribution similarity to binomial tail lower bound. Given a set $S = (z_0, y_1), \ldots, (z_0, y_m)$, how shall we reason about $P_{-1}(S)$, the probability of seeing dataset S when examples from S are drawn iid from D_{-1} ? Denote by $m_+(S)$ the number of +1's in y. Then,

$$P_{-1}(S) = \left(\frac{1}{2} - \epsilon\right)^{m_+(S)} \left(\frac{1}{2} + \epsilon\right)^{m-m_+(S)}$$

Symmetrically,

$$P_{+1}(S) = \left(\frac{1}{2} + \epsilon\right)^{m_+(S)} \left(\frac{1}{2} - \epsilon\right)^{m-m_+(S)}$$

Therefore, $P_{+1}(S) \ge P_{-1}(S)$ iff $n_+(S) \ge \frac{n}{2}$. Therefore, the right hand side of Equation (2) can be written as:

$$\frac{1}{2} \left(\sum_{S:m_{+}(S) \geq \frac{m}{2}} P_{-1}(S) + \sum_{S:m_{+}(S) < \frac{m}{2}} P_{+1}(S) \right) \\
= \frac{1}{2} \left(\mathbb{P}_{-1}(m_{+}(S) \geq \frac{m}{2}) + \mathbb{P}_{+1}(m_{+}(S) < \frac{m}{2}) \right) \\
\geq \frac{1}{2} \mathbb{P}_{-1}(m_{+}(S) \geq \frac{m}{2}).$$
(3)

Now, let us look closely at the probability that $\mathbb{P}_{-1}(m_+(S) \geq \frac{m}{2})$. It can be seen that under $P_{-1}, m_+(S)$ is the sum of m iid Bernoulli $(\frac{1}{2} - \epsilon)$ random variables (i.e. binomial distribution with m trials and success probability $\frac{1}{2} - \epsilon$). Our task is to lower bound its right tail probability, that is, the probability the empirical mean exceeds $\frac{1}{2}$.²

We invoke Slud's Inequality from probability theory:

Fact 1. Suppose $X \sim B(n, \frac{1}{2} - \epsilon)$. Then,

$$\mathbb{P}(X \ge \frac{n}{2}) \ge \frac{1}{2}(1 - \sqrt{1 - \exp\left\{-\frac{4n\epsilon^2}{1 - 4\epsilon^2}\right\}}).$$

 $^{^{2}}$ This is an anti-concentration result, in contrast to the concentration inequalities we have shown in the first few lectures.

Continuing Equation (3), with the choice of $m \leq \frac{1}{8\epsilon^2} \ln \frac{1}{16\delta}$, we have that $\exp\left\{-\frac{4m\epsilon^2}{1-4\epsilon^2}\right\}$ is at least 16δ , therefore, Slud's Inequality implies that the right hand side of Equation (3) is lower bounded by

$$\frac{1}{4}(1-\sqrt{1-\exp\left\{-\frac{4m\epsilon^2}{1-4\epsilon^2}\right\}}) \geq \frac{1}{4}(1-\sqrt{1-16\delta})$$
$$\geq \frac{1}{4}(1-\sqrt{(1-8\delta)^2})$$
$$\geq \frac{1}{4}\cdot 8\delta > \delta.$$

This concludes the proof of the lemma.

2 Proof of Lemma 2: Assouad's method

Assouad's method is a generalization of Le Cam's method, showing information-theoretic lower bounds on testing more than two hypotheses. Suppose we are given 2^d possible distributions $P_{\tau}, \tau \in \{\pm 1\}^d$ over the observation space \mathcal{O} (where each draw from the distribution results in an observation O in \mathcal{O}). Our task is to guess the identity of τ given O. Different from the last section where we are concerned with the probability that our guess $\hat{\tau}$ does not agree with the true τ , here we assign a *loss function* measuring the difference between $\hat{\tau}$ and τ :

$$\ell(\hat{\tau},\tau) = \sum_{j=1}^{d} \mathbf{1}(\hat{\tau}_j \neq \tau_j).$$

Here we use the Hamming loss, which counts the number of coordinates the two vectors differ.

We would like to show that if the P_{τ} 's are close to each other (in certain sense), then for any tester f there exists at least one τ such that under P_{τ} , the expectation of $\ell(\hat{\tau}, \tau)$ will be large.

We call $\tau \stackrel{j}{\sim} \tau'$ if τ and τ' only differ in their *j*-th coordinate, and call $\tau \sim \tau'$ if τ and τ' only differ in one coordinate.

Similar to Le Cam's method, we will use the shorthand that \mathbb{P}_{τ} (resp. \mathbb{E}_{τ}) denotes $\mathbb{P}_{O \sim P_{\tau}}$ (resp. $\mathbb{E}_{O \sim P_{\tau}}$).

Lemma 5 (Assouad's method). For any collection of functions $f = (f_1, \ldots, f_d)$, $f_i : \mathcal{O} \to \{\pm 1\}$, there exists at least one τ in $\{\pm 1\}^d$, such that

$$\mathbb{E}_{\tau}\ell(f(O),\tau) \geq \frac{d}{2} \cdot \min_{\tau,\tau':\tau \sim \tau'} \|P_{\tau} \wedge P_{\tau}'\|_{1}.$$

We defer the proof to the end of this section. We now discuss the implication of this lemma to agnostic PAC learning.

The construction. As $VC(\mathcal{H}) = d$, we can find d examples that z_1, \ldots, z_d that are shattered by \mathcal{H} . That is, for any $\tau \in \{\pm 1\}^d$, there exists a h_{τ} in \mathcal{H} such that $(h(z_1), \ldots, h(z_d)) = \tau$.

Define an unlabeled distribution D_X as uniform over $\{z_1, \ldots, z_d\}$. For $\tau \in \{\pm 1\}^d$, define

$$D_{\tau}(y|z_i) = \begin{cases} \frac{1}{2} + 2\tau_i \epsilon, & y = +1\\ \frac{1}{2} - 2\tau_i \epsilon, & y = -1 \end{cases}$$

In other words,

$$D_{\tau}(y|z_i) = \begin{cases} \frac{1}{2} + 2\epsilon, & y = \tau_i, \\ \frac{1}{2} - 2\epsilon, & y = \tau_i. \end{cases}$$

For every $\tau \in \{\pm 1\}^d$, D_{τ} is specified by the marginal D_X and the $D_{\tau}(y|x)$ described above.

Lemma 6. Suppose training sample size $m \leq \frac{d}{1600\epsilon^2}$. Then, there exists $\tau \in \{-1, +1\}^d$ such that

$$\mathbb{P}_{\tau}\left(\operatorname{err}(\hat{h}, D_{\tau}) - \min_{h \in \mathcal{H}} \operatorname{err}(h, D_{\tau})\right) > \frac{1}{4}$$

Proof. We prove the lemma in four steps.

Step 1: reducing PAC learning to hypothesis testing. Suppose the learner outputs a classifier $\hat{h} = \mathcal{A}(S)$. We can convert \hat{h} to a hypothesis tester $\hat{\tau} = (h(z_1), \ldots, h(z_d))$. Note that $\hat{\tau}$ can be written as f(S) for some function f. We observe that under distribution D_{τ} , the error of a classifier h is

$$\operatorname{err}(h, D_{\tau}) = \sum_{j=1}^{d} D_{\tau}(z_j) \left(D_{\tau}(\tau_j | z_j) \mathbf{1}(h(z_j) \neq \tau_j) + D_{\tau}(-\tau_j | z_j) \mathbf{1}(h(z_j) = \tau_j) \right)$$
$$= \left(\frac{1}{2} - 2\epsilon \right) + \frac{4\epsilon}{d} \cdot \sum_{j=1}^{d} \mathbf{1}(h(z_j) \neq \tau_j).$$

Therefore, the optimal classifier h in \mathcal{H} under D_{τ} is h_{τ} , which has an error rate of $\frac{1}{2} - 2\epsilon$. Moreover, for general classifier h, we have the following relationship between its excess error and the Hamming loss of its corresponding hypothesis tester:

$$\operatorname{err}(h, D_{\tau}) - \min_{h \in \mathcal{H}} \operatorname{err}(h, D_{\tau}) = \frac{4\epsilon}{d} \ell(\hat{\tau}, \tau).$$
(4)

Step 2: Applying Assouad's method. By Lemma 5 (recall that $\hat{\tau}$ can be written as f(S) for some function f), along with Equation (4), there exists a τ in $\{\pm 1\}^d$, such that

$$\mathbb{E}_{\tau}[\operatorname{err}(\hat{h}, D_{\tau}) - \min_{h \in \mathcal{H}} \operatorname{err}(h, D_{\tau})] \ge 2\epsilon \min_{\tau, \tau': \tau \sim \tau'} \|P_{\tau} \wedge P_{\tau}'\|_{1}.$$
(5)

Now the task comes down to lower bounding $\|P_{\tau} \wedge P'_{\tau}\|_1$ for all neighboring pairs τ and τ' .

Step 3: Bounding the ℓ_1 distance using KL divergence. For a neighboring pair τ and τ' , suppose they differ at coordinate j. What can we say about $\|P_{\tau} \wedge P'_{\tau}\|_1$? We first recall that

$$||P_{\tau} \wedge P_{\tau}'||_{1} = 1 - \frac{1}{2} ||P_{\tau} - P_{\tau'}||_{1}$$

Now, recall that in the calibration exercise, we have shown that

$$\|P_{\tau} - P_{\tau'}\|_1 \le \sqrt{2\operatorname{KL}(P_{\tau}, P_{\tau'})}.$$

Now, by Lemma 7 (as we will see shortly),

$$\operatorname{KL}(P_{\tau}, P_{\tau'}) \le \frac{48m\epsilon^2}{d}$$

With the choice of $m \leq \frac{d}{1600\epsilon^2}$, we have that

$$\mathrm{KL}(P_{\tau}, P_{\tau'}) < \frac{1}{32}$$

which implies that

$$||P_{\tau} \wedge P'_{\tau}||_1 > 1 - \frac{1}{2} \cdot \frac{1}{4} = \frac{7}{8}.$$

The above inequality, in conjunction with Equation (5), implies that

$$\mathbb{E}_{\tau}[\operatorname{err}(\hat{h}, D_{\tau}) - \min_{h \in \mathcal{H}} \operatorname{err}(h, D_{\tau})] > \frac{7}{4}\epsilon.$$
(6)

Step 4: High expected error implies high error with decent probability. Now, define random variable $W \triangleq \operatorname{err}(\hat{h}, D_{\tau}) - \min_{h \in \mathcal{H}} \operatorname{err}(h, D_{\tau})$. By Equation (4), W lies in $[0, 4\epsilon]$. Suppose for the sake of contradiction that $\mathbb{P}_{\tau}(W > \epsilon) \leq \frac{1}{4}$, then

$$\begin{split} \mathbb{E}_{\tau}[W] &\leq \mathbb{E}_{\tau}[W\mathbf{1}(W > \epsilon) + W\mathbf{1}(W \leq \epsilon)] \\ &\leq 4\epsilon \mathbb{P}_{\tau}(W > \epsilon) + \epsilon \cdot (1 - \mathbb{P}_{\tau}(W > \epsilon)) \\ &\leq \epsilon + 3\epsilon \mathbb{P}_{\tau}(W > \epsilon) \leq \frac{7}{4}\epsilon, \end{split}$$

contradition. Therefore, under P_{τ} , with probability $> \frac{1}{4}$, the excess error of \hat{h} is at least ϵ . Lemma 7. For τ and τ' in $\{\pm 1\}^d$ such that $\tau \sim \tau'$,

$$\operatorname{KL}(P_{\tau}, P_{\tau'}) \leq \frac{48m\epsilon^2}{d}.$$

Proof. Let us expand $KL(P_{\tau}, P_{\tau'})$:

$$\begin{aligned} \operatorname{KL}(P_{\tau}, P_{\tau'}) &= \sum_{(x_1, y_1), \dots, (x_m, y_m) \in (\{z_1, \dots, z_d\} \times \{\pm 1\})^m} P_{\tau}((x_1, y_1), \dots, (x_m, y_m)) \ln \frac{P_{\tau}((x_1, y_1), \dots, (x_m, y_m))}{P_{\tau'}((x_1, y_1), \dots, (x_m, y_m))} \\ &= \sum_{(x_1, y_1), \dots, (x_m, y_m) \in (\{z_1, \dots, z_d\} \times \{\pm 1\})^m} P_{\tau}((x_1, y_1), \dots, (x_m, y_m)) \sum_{i=1}^m \ln \frac{D_{\tau}(x_i, y_i)}{D_{\tau'}(x_i, y_i)} \\ &= \mathbb{E}_{S \sim D_{\tau}^m} [\sum_{i=1}^m \ln \frac{D_{\tau}(X_i, Y_i)}{D_{\tau'}(X_i, Y_i)}] \\ &= m \mathbb{E}_{(X, Y) \sim D_{\tau}} \ln \frac{D_{\tau}(X, Y)}{D_{\tau'}(X, Y)} \\ &= m \operatorname{KL}(D_{\tau}, D_{\tau'}), \end{aligned}$$

where the first equality is from the definition of the KL divergence between two distributions; the second equality uses the fact that as the examples of S are independent, $P_{\tau}((x_1, y_1), \ldots, (x_m, y_m)) = \prod_{i=1}^m D_{\tau}(x_i, y_i)$; the third equality follows from viewing $\sum_{i=1}^m \ln \frac{D_{\tau}(x_i, y_i)}{D_{\tau'}(x_i, y_i)}$ as a function of $(x_1, y_1), \ldots, (x_m, y_m)$ and using the definition of expectation; the fourth equality is from linearity of expectation, and the fact that all (X_i, Y_i) 's come from the same distribution D_{τ} ; the last inequality is again from the definition of KL divergence.

Note that $D_{\tau}(x, y)$ and $D_{\tau'}(x, y)$ only differs when $x = z_j$, specifically:

$$\ln \frac{D_{\tau}(x,y)}{D_{\tau}(x,y)} = \ln \frac{1/d \cdot D_{\tau}(y|x)}{1/d \cdot D_{\tau'}(y|x)} = \begin{cases} \ln \frac{1/2 + 2\epsilon}{1/2 - 2\epsilon}, & x = z_j, y = \tau_j \\ \ln \frac{1/2 - 2\epsilon}{1/2 + 2\epsilon}, & x = z_j, y = -\tau_j \\ 0, & x \neq z_j \end{cases}$$

Therefore,

$$\mathrm{KL}(D_{\tau}, D_{\tau'}) = \sum_{(x,y)} D_{\tau}(x,y) \ln \frac{D_{\tau}(x,y)}{D_{\tau'}(x,y)} = \frac{1}{d} \left(\frac{1}{2} + 2\epsilon\right) \ln \frac{1/2 + 2\epsilon}{1/2 - 2\epsilon} + \left(\frac{1}{2} - 2\epsilon\right) \ln \frac{1/2 - 2\epsilon}{1/2 + 2\epsilon} = \frac{1}{d} \operatorname{kl} \left(\frac{1}{2} + 2\epsilon, \frac{1}{2} - 2\epsilon\right) \ln \frac{1}{2} + \frac{1}{2}$$

The lemma is concluded in light of Lemma 8:

$$\operatorname{KL}(P_{\tau}, P_{\tau'}) = m \operatorname{KL}(D_{\tau}, D_{\tau'}) \le \frac{48m\epsilon^2}{d}.$$

Lemma 8. For $\epsilon \in (0, \frac{1}{8})$, we have

$$\operatorname{kl}\left(\frac{1}{2}+2\epsilon,\frac{1}{2}-2\epsilon\right) \le 48\epsilon^2.$$

Proof. First, observe that

$$kl\left(\frac{1}{2} + 2\epsilon, \frac{1}{2} - 2\epsilon\right) = \left(\frac{1}{2} + 2\epsilon\right)\ln\frac{1/2 + 2\epsilon}{1/2 - 2\epsilon} + \left(\frac{1}{2} - 2\epsilon\right)\ln\frac{1/2 - 2\epsilon}{1/2 + 2\epsilon} = 4\epsilon(\ln(1 + 4\epsilon) - \ln(1 - 4\epsilon)).$$

Now, $\ln(1+4\epsilon) \leq 4\epsilon$. In addition,

$$-\ln(1-4\epsilon) = \sum_{i=1}^{\infty} \frac{(4\epsilon)^i}{i} \le \sum_{i=1}^{\infty} (4\epsilon)^i = \frac{4\epsilon}{1-4\epsilon} \le 8\epsilon.$$

The lemma follows by algebra.

2.1Proof of Lemma 5

For j in $\{1, \ldots, d\}$, define $P_{j,+}$ to be the uniform mixture of all P_{τ} 's such that $\tau_j = 1$. Formally,

$$P_{j,+}(o) = \frac{1}{2^{d-1}} \sum_{\tau:\tau_j=+1} P_{\tau}(o).$$

Similarly, define $P_{j,-}$ as the uniform mixture of all P_{τ} 's such that $\tau_j = -1$. We first show the following simple lemma.

Lemma 9. For every $jin \{1, \ldots, d\}$,

$$\|P_{j,+} \wedge P_{j,-}\|_1 \ge \min_{\tau,\tau':\tau \sim \tau'} \|P_{\tau} \wedge P_{\tau}'\|.$$

Proof. Recall that $||P_{j,+} \wedge P_{j,-}||_1$ can be written in the following more intuitive form:

$$||P_{j,+} \wedge P_{j,-}||_1 = 1 - \frac{1}{2} ||P_{j,+} - P_{j,-}||_1.$$

Now, denote by τ^{j} the vector that differs with τ at coordinate j, we have

$$\begin{split} \|P_{j,+} - P_{j,-}\|_{1} &= \|\frac{1}{2^{d-1}} (\sum_{\tau:\tau_{j}=+1} P_{\tau} - \sum_{\tau:\tau_{j}=-1} P_{\tau'})\|_{1} \\ &= \|\frac{1}{2^{d-1}} (\sum_{\tau:\tau_{j}=+1} P_{\tau} - P_{\tau j})\|_{1} \\ &\leq \frac{1}{2^{d-1}} \sum_{\tau:\tau_{j}=+1} \|P_{\tau} - P_{\tau j}\|_{1} \\ &\leq \max_{\tau:\tau_{j}=+1} \|P_{\tau} - P_{\tau j}\|_{1} \\ &\leq \max_{\tau,\tau':\tau \sim \tau'} \|P_{\tau} - P_{\tau'}\|_{1}, \end{split}$$

where the first inequality is from triangle inequality; the second inequality is by replacing each term with the max; the third inequality is from that $\tau \sim \tau^j$. Therefore,

$$\begin{split} \|P_{j,+} \wedge P_{j,-}\|_{1} &\geq 1 - \frac{1}{2} \max_{\tau,\tau':\tau \sim \tau'} \|P_{\tau} - P_{\tau'}\|_{1} \\ &= \min_{\tau,\tau':\tau \sim \tau'} (1 - \frac{1}{2} \|P_{\tau} - P_{\tau'}\|_{1}) \\ &= \min_{\tau,\tau':\tau \sim \tau'} \|P_{\tau} \wedge P_{\tau'}\|_{1}. \end{split}$$

Lemma 5 now follows straightforwardly. Consider a random index T drawn uniformly at random from $\{\pm 1\}^d$. We will show that f has a large expected loss. Specifically:

$$\mathbb{E}_{T \sim U(\{\pm 1\}^d), O \sim P_T} \ell(f(O), T) = \mathbb{E} \sum_{j=1}^d \mathbf{1}(f_j(O) \neq T_j)$$

$$= \sum_{j=1}^d \mathbb{P}_{I \sim U(\{\pm 1\}), O \sim P_{j,I}}(f_j(O) \neq I)$$

$$\geq \sum_{j=1}^d \frac{1}{2} \|P_{j,+} \wedge P_{j,-}\|$$

$$\geq \frac{d}{2} \cdot \min_{\tau, \tau': \tau \sim \tau'} \|P_{\tau} \wedge P_{\tau}'\|,$$

where the first equality is from the definition of ℓ ; the second equality is from linearity of expectation, and the fact that we can alternatively view O as generated by the following process: first draw an $I \sim U(\{\pm 1\})$, then draw O from $P_{j,I}$; the first inequality is from Le Cam's Lemma (Lemma 3); the second inequality is from Lemma 9.

Therefore, there exists at least one τ in $\{\pm 1\}^d$, such that

$$\mathbb{E}_{\tau}\ell(f(O),\tau) \ge \frac{d}{2} \cdot \min_{\tau,\tau':\tau \sim \tau'} \|P_{\tau} \wedge P_{\tau}'\|_{1}. \quad \Box$$

3 The fundamental theorem of statistical learning

We first recall the following definition from PAC learning. Note that agnostic PAC learnability is a *distribution-free* concept, that is, it is only a property of a hypothesis class.

Definition 1. \mathcal{H} is said to be agnostic PAC learnable if there exists a function $m_A : (0,1)^2 \to \mathbb{N}$, and an algorithm \mathcal{A} , such that for any distribution D, for any $\epsilon, \delta > 0$, if $m \ge m_A(\epsilon, \delta)$, then with probability $1 - \delta$ over the draw of m training examples,

$$\operatorname{err}(\mathcal{A}(S), D) - \min_{h' \in \mathcal{H}} \operatorname{err}(h', D) \le \epsilon$$

We next define the uniform convergence property - that is, all classifiers' empirical error and generalization error are closer to each other as the sample size grows with high probability.

Definition 2. \mathcal{H} is said to satisfy the uniform convergence property if there exists a function $m_U : (0,1)^2 \to \mathbb{N}$ such that for any distribution D, for any $\epsilon, \delta > 0$, if $m \ge m_U(\epsilon, \delta)$, then with probability $1 - \delta$ over the draw of m training examples,

$$|\operatorname{err}(h, S) - \operatorname{err}(h, D)| \leq \epsilon.$$

Theorem 2 (The fundamental theorem of statistical learning). The following are equivalent:

- 1. \mathcal{H} satisfies the uniform convergence property.
- 2. \mathcal{H} is agnostic PAC learnable with ERM.
- 3. \mathcal{H} is agnostic PAC learnable.
- 4. H has finite VC dimension.

Remarks:

- 1. For binary classification, finite VC dimension is sufficient and necessary for distribution-free agnostic PAC learning. Intuitively, suppose \mathcal{H} is a model class (or scientific theory) that tries to "explain" the data (experiments). If \mathcal{H} has infinite VC dimension ("infalsifiable"), then there is no reliable way to use the theory to make future predictions of scientific outcomes.
- 2. ERM is optimal, in the sense that if there exists an algorithm has a finite sample complexity for agnostically learning \mathcal{H} , then ERM must also have a finite sample complexity for the same task. Moreover, ERM has a optimal agnostic PAC sample complexity of $\frac{1}{\epsilon^2}(d+\ln\frac{1}{\delta})$ (by a chaining argument). However, it is known that ERM does not achieve optimal *realizable* PAC sample complexity see [3, 1] for discussions.

Proof. $(1 \Rightarrow 2)$ Let $m_A(\epsilon, \delta) = m_U(\epsilon/2, \delta)$ and use the analysis of ERM.

$$(2 \Rightarrow 3)$$
 This is trivial.

 $(3 \Rightarrow 4)$ We use proof by contradiction. If VC(\mathcal{H}) = ∞ , then by Theorem 1 with $\epsilon = \frac{1}{16}$ and $\delta = \frac{1}{16}$, we know that for any algorithm \mathcal{A} and any sample size m, we can find a distribution D such that

$$\mathbb{P}_{S \sim D^m}\left(\operatorname{err}(\mathcal{A}(S), D) - \min_{h' \in \mathcal{H}} \operatorname{err}(h', D) > \frac{1}{16}\right) > \frac{1}{16}.$$

This contradicts with the fact that \mathcal{H} is agnostic PAC learnable (which implies that $m_A(\frac{1}{16}, \frac{1}{16})$ is finite). (4 \Rightarrow 1) See Theorem 1 of the "Rademacher Complexity" note.

References

- Steve Hanneke. The optimal sample complexity of pac learning. The Journal of Machine Learning Research, 17(1):1319–1333, 2016.
- [2] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to algorithms. Cambridge university press, 2014.
- [3] Hans U Simon. An almost optimal pac algorithm. In Conference on Learning Theory, pages 1552–1563, 2015.
- [4] Bin Yu. Assouad, fano, and le cam. In Festschrift for Lucien Le Cam, pages 423–435. Springer, 1997.