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In the last lecture, we show that finite VC dimension is sufficient for distribution-free agnostic PAC
learnability. For a hypothesis class H of VC dimension d, for all data distributions, ERM has an agnostic
PAC sample complexity O

(
1
ε2 (d ln 1

ε + ln 1
δ )
)
. 1

In this lecture, to complement the learnability result, given H of VC dimension d, we show that any learn-
ing algorithm must consume at least Ω

(
1
ε2 (d+ ln 1

δ )
)

samples to achieve agnostic PAC learning guarantee.
Moreover, if H has infinite VC dimension, any learning algorithm is unable to achieve distribution-free PAC
learning. The latter fact implies that finite VC dimension is necessary for distribution-free PAC learnability.

Theorem 1. For any hypothesis class H such that VC(H) ≥ d, and any learning algorithm A, and any
ε, δ ∈ (0, 18 ), there exists a distribution D over X ×{−1,+1}, such that when a set S of m = 1

16ε2 ( d
200 +ln 1

16δ )
examples is drawn iid from D, with probability at least δ,

err(ĥ, D)−min
h∈H

err(h,D) > ε,

where ĥ = A(S) is the output of learning algorithm.

Remark. Note well the order of quantifiers on algorithm A and distribution D. It may be tempting to
show a theorem that says “for every H, ε and δ, there is a distribution D such that for any algorithm
A, A fail to satisfy (ε, δ)-agnostic PAC learning guarantee.” Unfortunately this is impossible. Suppose
the distribution D is chosen, then there is a trivial algorithm A that satisfies the agnostic PAC learning
guarantee - outputting h? = argminh∈H err(h,D).

We show the theorem in the following two lemmas.

Lemma 1. Suppose the setting is the same as that of Theorem 1. There exists a distribution D such that,
if m, the size of S is at most 1

8ε2 ln 1
16δ , then with probability at least δ,

err(ĥ, D)−min
h∈H

err(h,D) > ε.

Lemma 2. Suppose the setting is the same as that of Theorem 1. There exists a distribution D such that,
if m, the size of S is at most d

1600ε2 , then with probability at least 1/4,

err(ĥ, D)−min
h∈H

err(h,D) > ε.

To see why the two lemmas together imply the theorem, consider two cases. When d
200 ≥ ln 1

16δ , by

Lemma 2, A will fail to satisfy agnostic PAC guarantee with m = 1
16ε2 ( d

200 + ln 1
16δ ) ≤ d

1600ε2 training

examples. Similarly, when d
200 < ln 1

16δ , by Lemma 1, A will fail to satisfy agnostic guarantee with m =
1

16ε2 ( d
200 + ln 1

16δ ) ≤ 1
8ε2 ln 1

16δ training examples.

1In fact, the sample complexity can be sharpened to O
(

1
ε2

(d + ln 1
δ

)
)

by an advanced technique called chaining (see Section

27.2 of [2]).

1



1 Proof of Lemma 1: an introduction to Le Cam’s method

Le Cam’s method [4] is a systematic way to prove information theoretic lower bounds. It is based on
the following thought experiment. Suppose we are given two possible distributions Pi, i ∈ {±1} over the
observation space O (where each draw from the distribution results in an observation O in O). Our task is
to guess the identity of i given O, i.e. output a î based on O (we can think of î = f(O), where f encodes
our thought process). If P+1 and P−1 are close, then there exists at least one distribution Pi, under which
our guess î would be wrong with decent probability.

(It may be helpful to think of P+1 and P−1 as two possible “scientific hypotheses”, and O is an scientific
experiment we conduct. Our task is to tell which hypothesis is the ground truth.) If you are familar with
hypothesis testing in statistics, this is exactly the same setting: we would like to show that no matter what
test we use, the sum of type I and type II errors would be large so long as the two hypotheses are close to
each other.

We will use the shorthand that Pi (resp. Ei) denotes PO∼Pi (resp. EO∼Pi).

Lemma 3 (Le Cam’s method). Suppose f is a mapping from O to {−1,+1}. Then for at least one of i in
{−1,+1},

Pi(f(O) 6= i) = Ei1(f(O) 6= i) ≥ 1

2

∑
o∈O

min(P−1(o), P+1(o)).

Remark. The right hand side is often written as ‖P−1 ∧ P+1‖1, measuring the similarity between two
distributions. Generally, if we have two distributions Q1 and Q2, we have:

‖Q1 ∧Q2‖1 =
∑
o∈O

min
(
Q1(o), Q2(o)

)
=

∑
o∈O

Q1(o) +Q2(o)

2
− |Q1(o)−Q2(o)|

2

= 1−
∑
o∈O

|Q1(o)−Q2(o)|
2

= 1− 1

2
‖Q1 −Q2‖1.

As a sanity check, if Q1 = Q2, ‖Q1 ∧ Q2‖1 = 1 and ‖Q1 − Q2‖1 = 0; on the other extreme, if Q1 and Q2

have disjoint support, then ‖Q1 ∧Q2‖1 = 0 and ‖Q1 −Q2‖1 = 2.
Suppose I is chosen uniformly at random from {±1}. What is the function f? that minimizes P(f(O) 6=

I)? Think of the problem as a binary classification problem, where (feature,label) pair (O, I) comes from a
joint distribution we have full knowledge about. Given O, we would like to classify O as either +1 or −1 to
minimize the error.

If you have studied probabilistic machine learning, you now can see that f? is the Bayes classifier:

f?(o) =

{
+1 P(I = +1|O = o) ≥ 1

2

−1 otherwise

Why does this function minimize the error rate? Observe that for any function f ,

P(f(O) 6= I) =
∑
o∈O

P(O = o)
(
P(I = −1|O = o)1(f(o) = +1) + P(I = −1|O = o)1(f(o) = −1)]

)
,

if we would like to choose f that minimize P(f(O) 6= I), it suffices for us to decide for each o, whether f(o)
should take value−1 or +1. Therefore, the f that minimizes the error will choose to predict argmaxi∈{±1} P(I =
i|O = o), which is equivalent to f?(o).
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This means that we can calculate P(f(O) 6= I) explicitly. In addition,

P(f(O) 6= I) =
1

2

(
P+1(f(O) 6= +1) + P−1(f(O) 6= −1)

)
≤ max

i
Pi(f(O) 6= i), (1)

so a lower bound of P(f(O) 6= I) implies a lower bound of maxi Pi(f(O) 6= i).
Let us now formalize the ideas above.

Proof. Suppose I is chosen uniformly from {±1}, and given I, O is drawn from PI . Then for any function
f ,

P(f(O) 6= I) ≥ P(f?(O) 6= I)

=
1

2

(
P−1(f?(O) = +1) + P+1(f?(O) = −1)

)
=

1

2

 ∑
o:P+1(o)≥P−1(o)

P−1(o) +
∑

o:P−1(o)>P+1(o)

P+1(o)


=

1

2

∑
o∈O

min
(
P−1(o), P+1(o)

)
Le Cam’s method is a statement about hypothesis testing. How can Le Cam’s method be useful in sample

complexity lower bounds? It turns out that we can construct a pair of learning problems, such that in order
to ensure PAC learning on both problems, solving a variant of hypothesis testing is necessary.

The construction. Suppose that x0 is an unlabeled example, H contains two classifiers h+1 and h−1, such
that hi(z0) = i for both i ∈ {−1,+1}. Define an unlabeled distribution DX such that PDX (x = z0) = 1. For
i ∈ {±1}, define

Di(y|z0) =

{
1
2 + iε, y = +1,
1
2 − iε, y = −1.

In other words,

Di(y|z0) =

{
1
2 + ε, y = i,
1
2 − ε, y = −i.

In addition, D+1 (resp. D−1) are specified by the marginal DX and the D+1(y|x) (resp. D−1(y|x)) described
above.

Here, we can think of the observations O are the training examples S, where given i, S is drawn from
Dm
i (m iid draws from distribution Di).

Lemma 4. Suppose training sample size m ≤ 1
8ε2 ln 1

16δ . Then, there exists i ∈ {−1,+1} such that

Pi
(

err(ĥ, Di)−min
h∈H

err(h,Di)

)
> δ.

Proof. We show the lemma in three steps.

Step 1: reducing PAC learning to hypothesis testing. ĥ induces a “guess” on the hypothesis index
i, that is,

î = ĥ(z0).

Note that as ĥ = A(S) is a function of training examples S, î can also be written as a function of S - we use
f to denote that function.
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For a classifier h, it is easy to see its error rate on Di is: err(h,Di) = 1
2 − ε+ 2ε1(h(z0) 6= i). In addition,

under Di, minh∈H err(h,Di) = 1
2 − ε, attained by a classifier h ∈ H such that h(z0) = i. This implies the

following relationship on the events:

{
f(S) 6= i

}
=
{
ĥ(z0) 6= i

}
⊆
{

err(ĥ, Di)−min
h∈H

err(h,Di) > ε

}
So proving the lemma reduces to showing that for at least one i in {±1}, Pi(f(S) 6= i) > δ, as this would

immediately imply Pi(err(ĥ, Di)−minh∈H err(h,Di) > ε) ≥ Pi(f(S) 6= i) > δ.

Step 2: applying Le Cam’s method. Invoking Lemma 3, we have that there exists i, Pi(Î 6= i) ≥
1
2‖P−1 ∧ P+1‖1. We shall show a lower bound on the right hand side.

‖P−1 ∧ P+1‖1 =
1

2

∑
o∈O

min(P−1(o), P+1(o))

=
1

2

∑
S∈({z0}×{±1})n

min
(
P−1(S), P+1(S)

)
(2)

Step 3: reducing distribution similarity to binomial tail lower bound. Given a set S = (z0, y1), . . . , (z0, ym),
how shall we reason about P−1(S), the probability of seeing dataset S when examples from S are drawn iid
from D−1? Denote by m+(S) the number of +1’s in y. Then,

P−1(S) =

(
1

2
− ε
)m+(S)(

1

2
+ ε

)m−m+(S)

.

Symmetrically,

P+1(S) =

(
1

2
+ ε

)m+(S)(
1

2
− ε
)m−m+(S)

.

Therefore, P+1(S) ≥ P−1(S) iff n+(S) ≥ n
2 . Therefore, the right hand side of Equation (2) can be written

as:

1

2

 ∑
S:m+(S)≥m2

P−1(S) +
∑

S:m+(S)<m
2

P+1(S)


=

1

2

(
P−1(m+(S) ≥ m

2
) + P+1(m+(S) <

m

2
)

)
≥ 1

2
P−1(m+(S) ≥ m

2
). (3)

Now, let us look closely at the probability that P−1(m+(S) ≥ m
2 ). It can be seen that under P−1, m+(S)

is the sum of m iid Bernoulli( 1
2 − ε) random variables (i.e. binomial distribution with m trials and success

probability 1
2 − ε). Our task is to lower bound its right tail probability, that is, the probability the empirical

mean exceeds 1
2 . 2

We invoke Slud’s Inequality from probability theory:

Fact 1. Suppose X ∼ B(n, 12 − ε). Then,

P(X ≥ n

2
) ≥ 1

2
(1−

√
1− exp

{
− 4nε2

1− 4ε2

}
).

2This is an anti-concentration result, in contrast to the concentration inequalities we have shown in the first few lectures.
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Continuing Equation (3), with the choice of m ≤ 1
8ε2 ln 1

16δ , we have that exp
{
− 4mε2

1−4ε2

}
is at least 16δ,

therefore, Slud’s Inequality implies that the right hand side of Equation (3) is lower bounded by

1

4
(1−

√
1− exp

{
− 4mε2

1− 4ε2

}
) ≥ 1

4
(1−

√
1− 16δ)

≥ 1

4
(1−

√
(1− 8δ)2)

≥ 1

4
· 8δ > δ.

This concludes the proof of the lemma.

2 Proof of Lemma 2: Assouad’s method

Assouad’s method is a generalization of Le Cam’s method, showing information-theoretic lower bounds on
testing more than two hypotheses. Suppose we are given 2d possible distributions Pτ , τ ∈ {±1}d over the
observation space O (where each draw from the distribution results in an observation O in O). Our task is to
guess the identity of τ given O. Different from the last section where we are concerned with the probability
that our guess τ̂ does not agree with the true τ , here we assign a loss function measuring the difference
between τ̂ and τ :

`(τ̂ , τ) =

d∑
j=1

1(τ̂j 6= τj).

Here we use the Hamming loss, which counts the number of coordinates the two vectors differ.
We would like to show that if the Pτ ’s are close to each other (in certain sense), then for any tester f

there exists at least one τ such that under Pτ , the expectation of `(τ̂ , τ) will be large.

We call τ
j∼ τ ′ if τ and τ ′ only differ in their j-th coordinate, and call τ ∼ τ ′ if τ and τ ′ only differ in

one coordinate.
Similar to Le Cam’s method, we will use the shorthand that Pτ (resp. Eτ ) denotes PO∼Pτ (resp. EO∼Pτ ).

Lemma 5 (Assouad’s method). For any collection of functions f = (f1, . . . , fd), fi : O → {±1}, there exists

at least one τ in {±1}d, such that

Eτ `(f(O), τ) ≥ d

2
· min
τ,τ ′:τ∼τ ′

‖Pτ ∧ P ′τ‖1.

We defer the proof to the end of this section. We now discuss the implication of this lemma to agnostic
PAC learning.

The construction. As VC(H) = d, we can find d examples that z1, . . . , zd that are shattered by H. That

is, for any τ ∈ {±1}d, there exists a hτ in H such that (h(z1), . . . , h(zd)) = τ .

Define an unlabeled distribution DX as uniform over {z1, . . . , zd}. For τ ∈ {±1}d, define

Dτ (y|zi) =

{
1
2 + 2τiε, y = +1,
1
2 − 2τiε, y = −1.

In other words,

Dτ (y|zi) =

{
1
2 + 2ε, y = τi,
1
2 − 2ε, y = τi.

For every τ ∈ {±1}d, Dτ is specified by the marginal DX and the Dτ (y|x) described above.
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Lemma 6. Suppose training sample size m ≤ d
1600ε2 . Then, there exists τ ∈ {−1,+1}d such that

Pτ
(

err(ĥ, Dτ )−min
h∈H

err(h,Dτ )

)
>

1

4
.

Proof. We prove the lemma in four steps.

Step 1: reducing PAC learning to hypothesis testing. Suppose the learner outputs a classifier
ĥ = A(S). We can convert ĥ to a hypothesis tester τ̂ = (h(z1), . . . , h(zd)). Note that τ̂ can be written as
f(S) for some function f . We observe that under distribution Dτ , the error of a classifier h is

err(h,Dτ ) =

d∑
j=1

Dτ (zj)
(
Dτ (τj |zj)1(h(zj) 6= τj) +Dτ (−τj |zj)1(h(zj) = τj)

)
= (

1

2
− 2ε) +

4ε

d
·
d∑
j=1

1(h(zj) 6= τj).

Therefore, the optimal classifier h in H under Dτ is hτ , which has an error rate of 1
2 − 2ε. Moreover, for

general classifier h, we have the following relationship between its excess error and the Hamming loss of its
corresponding hypothesis tester:

err(h,Dτ )−min
h∈H

err(h,Dτ ) =
4ε

d
`(τ̂ , τ). (4)

Step 2: Applying Assouad’s method. By Lemma 5 (recall that τ̂ can be written as f(S) for some

function f), along with Equation (4), there exists a τ in {±1}d, such that

Eτ [err(ĥ, Dτ )−min
h∈H

err(h,Dτ )] ≥ 2ε min
τ,τ ′:τ∼τ ′

‖Pτ ∧ P ′τ‖1. (5)

Now the task comes down to lower bounding ‖Pτ ∧ P ′τ‖1 for all neighboring pairs τ and τ ′.

Step 3: Bounding the `1 distance using KL divergence. For a neighboring pair τ and τ ′, suppose
they differ at coordinate j. What can we say about ‖Pτ ∧ P ′τ‖1? We first recall that

‖Pτ ∧ P ′τ‖1 = 1− 1

2
‖Pτ − Pτ ′‖1.

Now, recall that in the calibration exercise, we have shown that

‖Pτ − Pτ ′‖1 ≤
√

2 KL(Pτ , Pτ ′).

Now, by Lemma 7 (as we will see shortly),

KL(Pτ , Pτ ′) ≤
48mε2

d
.

With the choice of m ≤ d
1600ε2 , we have that

KL(Pτ , Pτ ′) <
1

32
,

which implies that

‖Pτ ∧ P ′τ‖1 > 1− 1

2
· 1

4
=

7

8
.

THe above inequality, in conjunction with Equation (5), implies that

Eτ [err(ĥ, Dτ )−min
h∈H

err(h,Dτ )] >
7

4
ε. (6)
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Step 4: High expected error implies high error with decent probability. Now, define random
variable W , err(ĥ, Dτ ) − minh∈H err(h,Dτ ). By Equation (4), W lies in [0, 4ε]. Suppose for the sake of
contradiction that Pτ (W > ε) ≤ 1

4 , then

Eτ [W ] ≤ Eτ [W1(W > ε) +W1(W ≤ ε)]
≤ 4εPτ (W > ε) + ε · (1− Pτ (W > ε))

≤ ε+ 3εPτ (W > ε) ≤ 7

4
ε,

contradition. Therefore, under Pτ , with probability > 1
4 , the excess error of ĥ is at least ε.

Lemma 7. For τ and τ ′ in {±1}d such that τ ∼ τ ′,

KL(Pτ , Pτ ′) ≤
48mε2

d
.

Proof. Let us expand KL(Pτ , Pτ ′):

KL(Pτ , Pτ ′) =
∑

(x1,y1),...,(xm,ym)∈({z1,...,zd}×{±1})m
Pτ ((x1, y1), . . . , (xm, ym)) ln

Pτ ((x1, y1), . . . , (xm, ym))

Pτ ′((x1, y1), . . . , (xm, ym))

=
∑

(x1,y1),...,(xm,ym)∈({z1,...,zd}×{±1})m
Pτ ((x1, y1), . . . , (xm, ym))

m∑
i=1

ln
Dτ (xi, yi)

Dτ ′(xi, yi)

= ES∼Dmτ [

m∑
i=1

ln
Dτ (Xi, Yi)

Dτ ′(Xi, Yi)
]

= mE(X,Y )∼Dτ ln
Dτ (X,Y )

Dτ ′(X,Y )

= mKL(Dτ , Dτ ′),

where the first equality is from the definition of the KL divergence between two distributions; the second
equality uses the fact that as the examples of S are independent, Pτ ((x1, y1), . . . , (xm, ym)) =

∏m
i=1Dτ (xi, yi);

the third equality follows from viewing
∑m
i=1 ln Dτ (xi,yi)

Dτ′ (xi,yi)
as a function of (x1, y1), . . . , (xm, ym) and using the

definition of expectation; the fourth equality is from linearity of expecation, and the fact that all (Xi, Yi)’s
come from the same distribution Dτ ; the last inequality is again from the definition of KL divergence.

Note that Dτ (x, y) and Dτ ′(x, y) only differs when x = zj , specifically:

ln
Dτ (x, y)

Dτ (x, y)
= ln

1/d ·Dτ (y|x)

1/d ·Dτ ′(y|x)
=


ln 1/2+2ε

1/2−2ε , x = zj , y = τj

ln 1/2−2ε
1/2+2ε , x = zj , y = −τj

0, x 6= zj

Therefore,

KL(Dτ , Dτ ′) =
∑
(x,y)

Dτ (x, y) ln
Dτ (x, y)

Dτ ′(x, y)
=

1

d

(
1

2
+ 2ε

)
ln

1/2 + 2ε

1/2− 2ε
+

(
1

2
− 2ε

)
ln

1/2− 2ε

1/2 + 2ε
=

1

d
kl

(
1

2
+ 2ε,

1

2
− 2ε

)
.

The lemma is concluded in light of Lemma 8:

KL(Pτ , Pτ ′) = mKL(Dτ , Dτ ′) ≤
48mε2

d
.
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Lemma 8. For ε ∈ (0, 18 ), we have

kl

(
1

2
+ 2ε,

1

2
− 2ε

)
≤ 48ε2.

Proof. First, observe that

kl

(
1

2
+ 2ε,

1

2
− 2ε

)
=

(
1

2
+ 2ε

)
ln

1/2 + 2ε

1/2− 2ε
+

(
1

2
− 2ε

)
ln

1/2− 2ε

1/2 + 2ε
= 4ε(ln(1 + 4ε)− ln(1− 4ε).

Now, ln(1 + 4ε) ≤ 4ε. In addition,

− ln(1− 4ε) =

∞∑
i=1

(4ε)i

i
≤
∞∑
i=1

(4ε)i =
4ε

1− 4ε
≤ 8ε.

The lemma follows by algebra.

2.1 Proof of Lemma 5

For j in {1, . . . , d}, define Pj,+ to be the uniform mixture of all Pτ ’s such that τj = 1. Formally,

Pj,+(o) =
1

2d−1

∑
τ :τj=+1

Pτ (o).

Similarly, define Pj,− as the uniform mixture of all Pτ ’s such that τj = −1.
We first show the following simple lemma.

Lemma 9. For every jin {1, . . . , d},

‖Pj,+ ∧ Pj,−‖1 ≥ min
τ,τ ′:τ∼τ ′

‖Pτ ∧ P ′τ‖.

Proof. Recall that ‖Pj,+ ∧ Pj,−‖1 can be written in the following more intuitive form:

‖Pj,+ ∧ Pj,−‖1 = 1− 1

2
‖Pj,+ − Pj,−‖1.

Now, denote by τ j the vector that differs with τ at coordinate j, we have

‖Pj,+ − Pj,−‖1 = ‖ 1

2d−1
(
∑

τ :τj=+1

Pτ −
∑

τ :τj=−1
Pτ ′)‖1

= ‖ 1

2d−1
(
∑

τ :τj=+1

Pτ − Pτj )‖1

≤ 1

2d−1

∑
τ :τj=+1

‖Pτ − Pτj‖1

≤ max
τ :τj=+1

‖Pτ − Pτj‖1

≤ max
τ,τ ′:τ∼τ ′

‖Pτ − Pτ ′‖1,
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where the first inequality is from triangle inequality; the second inequality is by replacing each term with
the max; the third inequality is from that τ ∼ τ j . Therefore,

‖Pj,+ ∧ Pj,−‖1 ≥ 1− 1

2
max

τ,τ ′:τ∼τ ′
‖Pτ − Pτ ′‖1

= min
τ,τ ′:τ∼τ ′

(1− 1

2
‖Pτ − Pτ ′‖1)

= min
τ,τ ′:τ∼τ ′

‖Pτ ∧ Pτ ′‖1.

Lemma 5 now follows straightforwardly. Consider a random index T drawn uniformly at random from
{±1}d. We will show that f has a large expected loss. Specifically:

ET∼U({±1}d),O∼PT `(f(O), T ) = E
d∑
j=1

1(fj(O) 6= Tj)

=

d∑
j=1

PI∼U({±1}),O∼Pj,I (fj(O) 6= I)

≥
d∑
j=1

1

2
‖Pj,+ ∧ Pj,−‖

≥ d

2
· min
τ,τ ′:τ∼τ ′

‖Pτ ∧ P ′τ‖,

where the first equality is from the definition of `; the second equality is from linearity of expectation, and
the fact that we can alternatively view O as generated by the follwing process: first draw an I ∼ U({±1}),
then draw O from Pj,I ; the first inequality is from Le Cam’s Lemma (Lemma 3); the second inequality is
from Lemma 9.

Therefore, there exists at least one τ in {±1}d, such that

Eτ `(f(O), τ) ≥ d

2
· min
τ,τ ′:τ∼τ ′

‖Pτ ∧ P ′τ‖1.

3 The fundamental theorem of statistical learning

We first recall the following definition from PAC learning. Note that agnostic PAC learnability is a
distribution-free concept, that is, it is only a property of a hypothesis class.

Definition 1. H is said to be agnostic PAC learnable if there exists a function mA : (0, 1)2 → N, and an
algorithm A, such that for any distribution D, for any ε, δ > 0, if m ≥ mA(ε, δ), then with probability 1− δ
over the draw of m training examples,

err(A(S), D)− min
h′∈H

err(h′, D) ≤ ε.

We next define the uniform convergence property - that is, all classifiers’ empirical error and generalization
error are closer to each other as the sample size grows with high probability.

Definition 2. H is said to satisfy the uniform convergence property if there exists a function mU : (0, 1)2 →
N such that for any distribution D, for any ε, δ > 0, if m ≥ mU (ε, δ), then with probability 1 − δ over the
draw of m training examples, ∣∣err(h, S)− err(h,D)

∣∣ ≤ ε.
9



Theorem 2 (The fundamental theorem of statistical learning). The following are equivalent:

1. H satisfies the uniform convergence property.

2. H is agnostic PAC learnable with ERM.

3. H is agnostic PAC learnable.

4. H has finite VC dimension.

Remarks:

1. For binary classification, finite VC dimension is sufficient and necessary for distribution-free agnostic
PAC learning. Intuitively, suppose H is a model class (or scientific theory) that tries to “explain” the
data (experiments). If H has infinite VC dimension (“infalsifiable”), then there is no reliable way to
use the theory to make future predictions of scientific outcomes.

2. ERM is optimal, in the sense that if there exists an algorithm has a finte sample complexity for
agnostically learning H, then ERM must also have a finite sample complexity for the same task.
Moreover, ERM has a optimal agnostic PAC sample complexity of 1

ε2 (d+ln 1
δ ) (by a chaining argument).

However, it is known that ERM does not achieve optimal realizable PAC sample complexity - see [3, 1]
for discussions.

Proof. (1 ⇒ 2) Let mA(ε, δ) = mU (ε/2, δ) and use the analysis of ERM.
(2 ⇒ 3) This is trivial.
(3 ⇒ 4) We use proof by contradiction. If VC(H) =∞, then by Theorem 1 with ε = 1

16 and δ = 1
16 , we

know that for any algorithm A and any sample size m, we can find a distribution D such that

PS∼Dm
(

err(A(S), D)− min
h′∈H

err(h′, D) >
1

16

)
>

1

16
.

This contradicts with the fact that H is agnostic PAC learnable (which implies that mA( 1
16 ,

1
16 ) is finite).

(4 ⇒ 1) See Theorem 1 of the ”Rademacher Complexity” note.
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