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1 Chernoff bound for Bernoulli distributions

In the binary classification setup, recall that the Zi = I(h(Xi) 6= Yi)’s are drawn iid from the Bernoulli
distribution of mean p = err(h,D). As seen in the last lecture, applying Hoeffding’s inequality already gives
us strong concentration results of Z̄ to p (with tail bound exponentially decreasing with sample size). But
in fact we can say more for this special Bernoulli case. Formally we have the following.

Theorem 1 (Binomial Chernoff bound). Suppose Z1, . . . , Zm are drawn iid from the Bernoulli distribution
with mean p. Then,

P(Z̄ − µ ≥ ε) ≤ exp
{
−n kl(p+ ε, p)

}
,

P(Z̄ − µ ≤ −ε) ≤ exp
{
−n kl(p− ε, p)

}
,

where kl(p, q) = p ln p
q + (1− p) ln 1−p

1−q is the binary relative entropy.

Before going into the proof of the theorem, let us see several important consequences of the theorem.

1. As we have already seen in the calibration homework, for any qin[0, 1],

kl(q, p) ≥ 2(q − p)2.

This implies that both P(Z̄ − µ ≥ ε) and P(Z̄ − µ ≥ ε) are at most e−2nε
2

. Notice that this is exactly
what Hoeffding’s Inequality implies for Bernoulli random variables.

2. Another fact we proved in the calibration homework is that kl(q, p) ≥ (q−p)2
2max(p,q) . Fix µ ∈ [0, 1), and let

ε = µp. We get that

kl(p(1 + µ), p) ≥ µ2p2

2(1 + µ)p
≥ µp2

4
,

kl(p(1− µ), p) ≥ µ2p2

2(1− µ)p
≥ µp2

4
.

This implies that both P(Z̄ ≥ p(1 + µ)) and P(Z̄ ≤ p(1− µ)) are at most e−
npµ2

4 . 1 This is oftentimes
called a relative (or multiplicative) Chernoff bound for Bernoulli random variables (as it considers the
ratio between empirical frequency and true mean), and is much tighter than Hoeffding’s Inequality
when p is small.

1The constants in the exponents are by no means tight; in fact bounds with better constants (1/3 for the upper tail and 1/2
for the lower tail) can be found in the literature. However, in learning theory the constants are of secondary importance; the
asymptotic orders of the convergence rates are often quantities of interest.
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Proof. Using the Chernoff bound for general random variables (see Lemma 1 from our last note), it suffices
to show that for any q in [0, 1], supt∈R

(
tq − ψZ(t)

)
= kl(q, p), where ψZ is the common cumulant generating

function of all Zi’s.
First, let us compute ψZ . As Zi’s take value 1 with probability p and take value 0 with probability 1− p,

ψZ has a closed form:
ψZ(t) = lnEetZ = ln

(
pet + (1− p)

)
,

Now let F (t) = tq − ψZ(t). Our goal is to show that supt∈R F (t) = kl(q, p). Taking derivative of F with
respect to t, we get that

F ′(t) = q − pet

(1− p) + pet
.

Setting F ′(t) = 0, we get that t? = ln q(1−p)
p(1−q) is the only critical point of F . It can be readily checked

that F ′(t) > 0 if t < t?, and F ′(t) ≥ 0 if t > t?. Hence, t? is the unique maximum of F , and

sup
t∈R

F (t) = F (t?) = qt? − ln
(
pet

?

+ (1− p)
)

= kl(q, p).

2 McDiarmid’s Inequality

So far, we have seen concentration inequalities for averages of iid random variables. In this section, we go
one step further: we consider general functions of iid random variables. Denote by f the function of interest,
which takes into input x1, . . . , xn and outputs a real number f(x1, . . . , xn). As long as f is not too sensitive
on all its inputs (formally defined below), a random evaluation on f , i.e. f(X1, . . . , Xn), will be close to its
expectation Ef(X1, . . . , Xn).

Definition 1 (Sensitivity). Suppose f is a function from V n to R. f is called c-sensitive, if for every i in
{1, . . . , n}, every x1, . . . , xn, xi in V ,

|f(x1, . . . , xi−1, xi, xi+1, . . . , xn)− f(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)| ≤ c.

This property is also called bounded difference: suppose f have an input x1, . . . , xn, and we replace the
i-th input with an arbitrary value x′i, then the output of f only changes by c. Intuitively, if c is smaller,
then f is more well-behaved.

Theorem 2 (McDiarmid’s Inequality). Suppose f is a function from V n to R that is c-sensitive. In addition,
suppose X1, . . . , Xn are iid random variables that take values in V . Then,

P(|f(X1, . . . , Xn)− Ef(X1, . . . , Xn)| ≥ ε) ≤ 2e−
2ε2

nc2

Observe that Hoeffding’s Inequality is a special case of McDiarmid’s Inequality: Suppose {Xi}ni=1 are

iid random variables that take values in V = [a, b], with mean µ. We let f(x1, . . . , xn) =
∑n
i=1 xi
n be the

empirical mean function. Note that f is b−a
n -sensitive, moreover, Ef(x1, . . . , xn) = µ.

This implies that

P(|X̄ − µ| ≥ ε) ≤ 2 exp

{
− 2ε2

n · (b−a)
2

n2

}
= 2e

− 2nε2

(b−a)2 .

Proof. We will still consider the moment generating function of f(X1, . . . , Xn). However, we cannot directly
apply Chernoff bound this time, as Chernoff bound only applies to the mean of a set of iid random variables.

We have the following key claim.

Claim 1. For all t in R,

E exp
{
t(f(X1, . . . , Xn)− Ef(X1, . . . , Xn))

}
≤ exp

{
n
c2t2

8

}
.
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To see how the claim concludes the proof, we note that for all t > 0,

P(f(X1, . . . , Xn)− Ef(X1, . . . , Xn) ≥ ε) = P(exp
{
t(f(X1, . . . , Xn)− Ef(X1, . . . , Xn))

}
≥ exp{tε})

≤ E exp
{
t(f(X1, . . . , Xn)− Ef(X1, . . . , Xn))

}
exp{−tε}

≤ exp

{
n
c2t2

8
− tε

}

where the first inequality is Markov’s Inequality, the second inequality is from Claim 1. Now, pick t = 4ε
nc2 > 0,

we get that P(f(X1, . . . , Xn) − Ef(X1, . . . , Xn) ≥ ε) ≤ e−
2nε2

c2 . The theorem follows from establishing the
lower tail bound similarly, along with union bound.

Proof of Claim 1. We first setup some useful notation. We denote by fn the original function f of n variables,
and denote by f0 the constant Ef(X1, . . . , Xn).

In addition, denote by fn−1 the function of (n− 1) variables, such that

fn−1(x1, . . . , xn−1) = E[fn(X1, . . . , Xn)|X1 = x1, . . . , Xn = xn].

In other words, fn−1(x1, . . . , xn−1) is the expectation of the output of f , given that the first (n−1)-th inputs
observed are x1, . . . , xn−1. Suppose that every xi has a probability density function p, fn−1 has the following
explicit form:

fn−1(x1, . . . , xn−1) =

∫
V

fn(x1, . . . , xn−1, xn)p(xn)dxn.

We have the following important properties of fn−1:

1. Efn−1(X1, . . . , Xn−1) =
∫
V n

fn(x1, . . . , xn−1, xn)p(x1) . . . p(xn)dx1 . . . dxn = f0.

2. It can be checked that fn−1 is also c-sensitive. For example, consider changing the first coordinate
from x1 to x′1:

|fn−1(x1, x2, . . . , xn−1)− fn−1(x′1, x2, . . . , xn−1)|

=

∫
V

(fn(x1, . . . , xn−1, xn)− fn(x′1, . . . , xn−1, xn))p(xn)dxn

≤
∫
V

|fn(x1, . . . , xn−1, xn)− fn(x′1, . . . , xn−1, xn)|p(xn)dxn

≤
∫
V

cp(xn)dxn = c.

We will show that for all t in R,

E exp
{
t(fn(X1, . . . , Xn)− f0)

}
≤ E exp

{
t(fn−1(X1, . . . , Xn−1)− f0)

}
· exp

{
c2t2

8

}
. (1)

To see why this implies the claim, we note that we can apply the same inequality again on fn−1(X1, . . . , Xn−1))
and define function fn−2 similarly as before, getting

E exp
{
t(fn−1(X1, . . . , Xn−1))

}
≤ E exp

{
t(fn−2(X1, . . . , Xn−2))

}
exp

{
c2t2

8

}
,
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Repeatedly applying Equation (1) (with appropriate definitions of functions fn−i’s), we get

E exp
{
t(fn(X1, . . . , Xn)− f0)

}
≤ E exp

{
t(fn−1(X1, . . . , Xn−1)− f0)

}
· exp

{
1 · c

2t2

8

}

≤ E exp
{
t(fn−2(X1, . . . , Xn−2)− f0)

}
· exp

{
2 · c

2t2

8

}
≤ . . .

≤ E exp
{
t(f1(X1)− f0)

}
· exp

{
(n− 1) · c

2t2

8

}

≤ E exp
{
t(f0 − f0)

}
· exp

{
n · c

2t2

8

}
= exp

{
n
c2t2

8

}
,

where the i-th inequality is by Equation (1) on fn−i+1 and the fact that fn−i+1 is c-sensitive.
Back to the proof of Equation (1). We first write down the left hand side explicitly:

E exp
{
t(fn(X1, . . . , Xn)− f0)

}
= E exp

{
t
(
fn(X1, . . . , Xn)− fn−1(X1, . . . , Xn−1)

)
+ t
(
fn−1(X1, . . . , Xn−1)− f0

)}
=

∫
V

. . .

∫
V

exp
{
t
(
fn(x1, . . . , xn)− fn−1(x1, . . . , xn−1)

)
+ t
(
fn−1(x1, . . . , xn−1)− f0

)}
p(x1) . . . p(xn)dx1 . . . dxn

=

∫
V

. . .

∫
V

p(x1) . . . p(xn−1)dx1 . . . dxn−1 exp
{
t
(
fn−1(x1, . . . , xn−1)− f0

)}
g(x1, . . . , xn−1), (2)

where g(x1, . . . , xn−1) ,
∫
V

exp
{
t
(
fn(x1, . . . , xn)− fn−1(x1, . . . , xn−1)

)}
p(xn)dxn, and the last equality is

by reducing the multiple integral to an iterated integral.
Suppose for the moment that x1, . . . , xn−1 are fixed numbers, and only Xn is random. Consider a

random variable Z = fn(x1, . . . , xn−1, Xn). Note that Z takes values from interval [a, b], where a =
minxn∈V fn(x1, . . . , xn−1, xn) and b = maxxn∈V fn(x1, . . . , xn−1, xn). Observe that b − a ≤ c as fn is c-
sensitive. By Lemma 2 in the last note (mgf bound for Hoeffding’s Inequality),

Eet(Z−EZ) ≤ e
(b−a)2t2

8 .

Written in integral form, the above is∫
V

exp
{
t
(
fn(x1, . . . , xn)− fn−1(x1, . . . , xn−1)

)}
p(xn)dxn ≤ e

(b−a)2t2
8 ,

i.e. g(x1, . . . , xn−1) ≤ e
(b−a)2t2

8 . Plugging this inequality into Equation (2), we get

E exp
{
t(fn(X1, . . . , Xn)− f0)

}
≤

∫
V

. . .

∫
V

p(x1) . . . p(xn−1)dx1 . . . dxn−1 exp
{
t
(
fn−1(x1, . . . , xn−1)− f0

)}
· e

(b−a)2t2
8

= E exp
{
t
(
fn−1(X1, . . . , Xn−1)− f0

)}
· e

(b−a)2t2
8 .

This concludes the proof of Equation (1), and the proof of the claim.
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Remark. For readers that are familiar with conditional expectation notation, the notation in the proof of
Equation (1) can be simplified a bit. Specifically,

E exp
{
t(fn(X1, . . . , Xn)− f0)

}
= E exp

{
t
(
fn(X1, . . . , Xn)− fn−1(X1, . . . , Xn−1)

)
+ t
(
fn−1(X1, . . . , Xn−1)− f0

)}
= E

[
exp
{
t
(
fn−1(X1, . . . , Xn−1)− f0

)}
· E
[
exp
{
t
(
fn(X1, . . . , Xn)− fn−1(X1, . . . , Xn−1)

)}
|X1, . . . , Xn−1

]]

≤ E
[
exp
{
t
(
fn−1(X1, . . . , Xn−1)− f0

)}
· e

(b−a)2t2
8

]
= E

[
exp
{
t
(
fn−1(X1, . . . , Xn−1)− f0

)}]
· e

(b−a)2t2
8 .
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