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1 Concentration of measure

Concentration of measure, (narrowly speaking) states the following:

Given a set of independently and identically distributed (iid) random variables, their empirical
mean concentrates around the true mean with overwhelming probability.

One important example is Hoeffding’s Inequality, where the distribution of each random variable is
supported on an bounded interval:

Theorem 1 (Hoeffding’s Inequality). Suppose that Z1, . . . , Zn’s are iid random variables such that a ≤ Zi ≤
b for all i. Denote by Z̄ := 1

n

∑n
i=1 Zi, and µ = EZi. Then, for any ε > 0,

P(|Z̄ − µ| > ε) ≤ 2e
− 2nε2

(b−a)2 . (1)

In other words, with probability 1− δ,

|Z̄ − µ| ≤ (b− a) ·

√
ln 2

δ

2n
. (2)

Why is Hoeffding’s Inequality relevant in machine learning theory? Consider the binary classification
setup: suppose examples (x, y)’s are drawn from a distribution D. In addition, we are (magically) given a
classifier h : X → {−1,+1}. We would like to know the performance of h, measured by its generalization
error, i.e.

err(h,D) , P(h(x) 6= y).

But we only have access to the training examples S = (xi, yi)
m
i=1 drawn iid from D.1 How can we measure

the performance of h? We can use the training error of h as a proxy, denoted as

err(h, S) ,
1

m

m∑
i=1

1(h(xi) 6= yi).

Now, applying Hoeffding’s inequality with Zi = 1(h(xi) 6= yi), a = 0, b = 1, we get that with probability
1− δ,

| err(h, S)− err(h,D)| ≤

√
ln 2

δ

2m
.

This show that with high probability, the generalization error of h will be concentrated around the
empirical error of h.

1It is important that h should be independent of S here, otherwise h might well “overfit” to S.
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1.1 Chernoff bound

Note that apart from Hoeffding’s Inequality, we can alternatively apply Chebyshev’s Inequality to get a

bound on P(|Z̄ − µ| ≥ ε). Indeed, taking X = Z̄, µ = EZ̄, since Var(Z̄) = 1
n Var(Z1) ≤ (b−a)2

n , we have

P(|Z̄ − µ| > ε) ≤ (b− a)2

nε2
.

If we set ε such that right hand side to be δ, then we get ε = (b− a)

√
1
δ

n ; that is,

P

|Z̄ − µ| > (b− a)

√
1
δ

n

 ≤ δ.
In other words, with probability 1− δ,

|Z̄ − µ| ≤ (b− a)

√
1
δ

n
. (3)

Now compare Equation (2) with Equation (3), with constants ignored. We can immediately see that, when
δ is small, Hoeffding’s Inequality implies stonger concentration of the empirical mean to the true mean -
indeed, the dependency of δ is ln 1

δ in Hoeffding’s Inequality, which is much smaller than 1
δ for small δ.

How can Hoeffding’s Inequality obtain a stronger result? Note that applying Chebyshev’s Inequality only
uses the second moment of Z̄. In contrast, the proof of Hoeffding’s Inequality utilizes a new tool called the
moment generating function, which (implicitly) uses all moments of Z̄; in addition, it takes advantage of the
independence structure of all Zi’s in a clever way, as we will set next.

Definition 1. φX , the moment generating function of a random variable X, is defined as φX(t) , E[etX ].
ψX , the cumulant generating function of X, is defined as ψX(t) , lnφX(t) = lnE[etX ]. 2

Lemma 1 (Chernoff Bound). Suppose Z1, . . . , Zn are iid, and have a common cumulant generating function
ψZ . Then for any ε > 0,

P(Z̄ − µ ≥ ε) ≤ exp

−n
(

sup
t≥0

t(µ+ ε)− ψZ(t)

) = exp

−n
(

sup
t∈R

t(µ+ ε)− ψZ(t)

), 3 (4)

P(Z̄ − µ ≤ −ε) ≤ exp

−n
(

sup
t≤0

t(µ− ε)− ψZ(t)

) = exp

−n
(

sup
t∈R

t(µ− ε)− ψZ(t)

). (5)

Proof. First, observe that for any t ≥ 0, event
{
Z̄ − µ ≥ ε

}
is the same as

{∑n
i=1 Zi ≥ n(µ+ ε)

}
, which is

contained in
{∑n

i=1 tZi ≥ tn(µ+ ε)
}

. Exponentiating both sides, the above event is
{
e
∑n
i=1 tZi ≥ etn(µ+ε)

}
.

Applying Markov’s Inequality on the random variable e
∑n
i=1 tZi , we get:

P(Z̄ − µ ≥ ε) ≤ e−nt(µ+ε)Ee
∑n
i=1 tZi .

2If we write ψX(t) as a infinite series
∑∞

n=0 ant
n, then n!an is called the n-th cumulant of X; specifically, it can be checked

that the first cumulant is the mean of X and the second cumulant is the variance of X.
3The term supt∈R t(µ+ ε) − ψZ(t) is often written as ψ?

Z(µ+ ε); here for a function f , we denote by its Fenchel conjugate
f?(y) = supx∈R(xy − f(x)). We will formally introduce this definition in future lectures.
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Observe that the expectation of e
∑n
i=1 tZi has the following simple form:

Ee
∑n
i=1 tZi = E

n∏
i=1

etZi =

n∏
i=1

EetZi = (φZ(t))n = enψZ(t).

where the first equality is simple algebraic manipulation, the second equality follows from the independence
of Zi’s (this shows the power of exponentiation!), the third equality uses the definition of φZ , and the last
equality uses the fact that ψZ = lnφZ .

Therefore,
P(Z̄ − µ ≥ ε) ≤ e−nt(µ+ε)+nψZ(t) = e−n(t(µ+ε)−ψZ(t)).

As the above inequality holds for any t ≥ 0, the inequality of Equation (4) is concluded by observing that

min
t≥0

exp
{
−n(t(µ+ ε)− ψZ(t))

}
= exp

{
−n
(

max
t≥0

t(µ+ ε)− ψZ(t)

)}
.

For the equality of (4), we first note that by Jensen’s Inequality,

φZ(t) = E[etZ ] ≥ etEZ = etµ.

This implies that for all t < 0, t(µ+ ε)− ψZ(t) ≤ tε ≤ 0 = 0(µ+ ε)− ψ(0). Therefore,

max
t≥0

t(µ+ ε)− ψZ(t) = max
t∈R

t(µ+ ε)− ψZ(t).

The proof of Equation (5) follows from the exact same reasoning, and is left as an exercise.

2 Proof of Hoeffding’s Inequality

Chernoff bound (Lemma 1) offers an generic tool to bound the tail probability of the mean of a set of iid
random variables Zi’s: it reduces the problem to establishing properties on the moment generating function
of each Zi. In the condition of Hoeffding’s Inequality, the only information we have about Zi is that it has
range [a, b] and has mean µ. What can we say about φZ and ψZ? It turns out that we can say something
quite nontrivial, as shown in the next lemma.

Lemma 2. For a random variable Z such that Z ∈ [a, b] and EZ = µ, we have

φZ(t) ≤ eµt+
(b−a)2

8 t2 ,

consequently, ψZ(t) ≤ µt+ (b−a)2
8 t2.

Proof. First, suppose b − a = 0. In this case, Z = µ with probability 1, therefore the lemma statement
trivially holds.

Now suppose b− a = 1. (We will defer the case with general settings of b− a to the end of the proof.)
The trick is to write Z as a convex combination of a and b: specifically, Z = (Z−a) · b+ (b−Z) ·a. Note

that the coefficients (Z − a) and (b− Z) are both nonnegative and sum to 1. Now let’s look at φZ .

φZ(t) = E[exp
{

(Z − a) · tb+ (b− Z) · ta
}

]

≤ E[(Z − a) · etb + (b− Z)eta]

= (µ− a)etb + (b− µ)eta

Taking log on both sides, and subtracting µt on both sides, we get,

ψZ(t)− µt ≤ ln
(

(µ− a)etb + (b− µ)eta
)
.
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Hence,

ψZ(t)− µt ≤ ln
(

(µ− a)et(b−µ) + (b− µ)et(a−µ)
)
. (6)

Now, let p = µ − a, therefore, 1 − p = b − µ. This implies that the right hand side of Equation 6 equals
ln
(
pet−tp + (1− p)e−tp

)
=: f(t). Using Lemma 3 (given below), we conclude that

ψZ(t)− µt ≤ 1

8
t2, (7)

which gives the lemma statement.
Now consider the case of general b − a. For random variable Z that takes value between a and b, Z

b−a
takes values between range a′ = a

b−a and b′ = b
b−a , and has mean µ′ = µ

b−a . Note that b′ − a′ = 1. Using
Equation 7, we have that for any s,

Ees
Z
b−a ≤ exp

{
µ′s+

1

8
s2
}
,

For any t, consider s = (b− a)t in the above inequality, we get

EetZ ≤ exp

{
µt+

(b− a)2

8
t2

}
.

The lemma follows.

Lemma 3. Suppose f(t) = ln
(
pet + 1− p

)
− tp for some p ∈ [0, 1]. Then f(t) ≤ 1

8 t
2 for all t ∈ R.

Proof. We have the following properties of f :

1. f(0) = 0,

2. f ′(t) = pet

pet+1−p − p, and f ′(0) = 0,

3. f ′′(t) = pet·(1−p)
(pet+1−p)2 , and by Arithmetic Mean-Geometric Mean inequality on the numerator, f ′′(t) ≤ 1

4

for all t in R.

Therefore, by Taylor’s Theorem, for all t ∈ R, there exists ξ between 0 and t, such that

f(t) = f(0) + f ′(0) · t+
f ′′(ξ)

2
t2 =

f ′′(ξ)

2
t2.

By Property 3 above, f ′′(ξ) ≤ 1
4 , we get the lemma.

The cumulant generating function bound on bounded random variable (Lemma 2) and Chernoff bound
(Lemma 1) together allow us to conclude Hoeffding’s Inequality.

Proof of Theorem 1. We first show that

P(Z̄ − µ > ε) ≤ e−
2nε2

(b−a)2 . (8)

Now, applying Lemma 2,

sup
t∈R

(
t(µ+ ε)− ψZ(t)

)
≥ sup

t∈R

(
(µ+ ε)t− (µt+

(b− a)2

8
t2)

)

≥ sup
t∈R

(
εt− (b− a)2

8
t2

)

=
2ε2

(b− a)2
.
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Plugging into Equation (4) of Chernoff bound, we get Equation (8). Symmetrically, we have

P(Z̄ − µ < −ε) ≤ e−
2nε2

(b−a)2 . (9)

Equation (1) follows from Equations 8 and (9), along with union bound ( event
{
|Z̄ − µ| > ε

}
is the union

of events
{
Z̄ − µ > ε

}
and

{
Z̄ − µ < ε

}
).

Equation (2) follows directly from Equation (1), with the setting of ε =

√
ln 2
δ

2n .
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