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1 Boosting

Motivation: spam classification

1. Given: emails in the form of text; Goal: find a good classifier that can tell good emails from spam
emails.

2. Observation: there are many “rule of thumb” available: e.g. contains “free offer” / “a million dollar”
⇒ spam

3. However: hard to find a single rule that is accurate

4. Boosting: one systematic way of combining “weak” classification rules to strong classification rules.

Theoretical Formulation:

Definition 1 (weak PAC learning). A is a γ-weak PAC learner for hypothesis class H, if for any distribution
D realizable by H, any ε ≥ 1

2 − γ, A produces a classifier h such that with probability 1− δ,

err(h,D) ≤ ε.

H is called γ-weak PAC learnable if there is a γ-weak PAC learner for H.

Note that the difference between weak PAC learning and the regular notion of PAC learning. In weak
PAC learning, we only require that the classifier output by the weak learner has an error slightly better than
random guessing (50%), as opposed to arbitrary small ε.

A brief history of boosting:

1. [Kearns, 1988] - open question: if H is a weak PAC learnable, is H also PAC learnable?

2. [Schapire, 1990]: Affirmative answer to the open question with a new technique now known as “boost-
ing”. Proposes the first boosting algoithm (by recursion).

3. [Freund, 1990]: Boost by majority algorithm: combining the output of weak learners by a majority
vote

4. [Freund and Schapire, 1997]: AdaBoost, an adaptive and practical boosting algorithm (that does not
need to know γ)

5. Since then: many more empirical success stories of boosting, e.g. XGBoost [Chen and Guestrin, 2016]
is still dominating many ML competitions (e.g. those in Kaggle) as of now.
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Algorithm 1 Adaboost

Require: Training examples (xi, yi)
m
i=1, weak learner B.

Initialize distributions over all training examples (D1(i))mi=1.
for t = 1, 2, . . . , T : do
ht ← B trained on weighted examples ((xi, yi), Dt(i))

m
i=1.

Let εt =
∑m
i=1Dt(i)1(yi 6= ht(xi)) be the weighted error of ht on distribution Dt, and αt = 1

2 ln 1−εt
εt

.

Update weighting on training examples: Dt+1(i) = Dt(i)e
−αtyiht(xi)/Zt where Zt is a normalizer that

ensures
∑m
i=1Dt+1(i) = 1.

end for
Final classifier HT (x) = sign(

∑T
t=1 αtht(x)).

2 AdaBoost: algorithm and analysis

High-level idea: Maintain a weighting on training examples. Repeatedly call weak learner, and adjust
the weightings of training examples so that hard examples get emphasized in subsequent training. See
Algorithm 1 for a formal description.

We can show that, if at every round of AdaBoost, B returns a “useful” classifier, in the sense that
εt is slightly better than 0.5 (by a positive “edge” γ), then AdaBoost will bring the training error down
exponentially fast.

Theorem 1. Suppose for every t, εt ≤ 1
2 − γ. Then err(HT , S) ≤ exp

{
−2Tγ2

}
.

Proof. Define exponential loss as φ(z) = exp(−z). It can be seen that φ(z) ≥ 1(z ≤ 0). Denote by
fs(x) =

∑s
t=1 αtht(x). Using the notation, HT (x) = sign(fT (x)).

Using this relationship, we can upper bound the training error of Ht using its empirical exponential loss:

err(HT , S) =
1

m

m∑
i=1

1(HT (xi) 6= yi)

=
1

m

m∑
i=1

1(yi · fT (x) ≤ 0)

≤ 1

m

m∑
i=1

exp
{
−yifT (xi)

}
What do we know about the expoential loss for the i-th example, exp

{
−yifT (xi)

}
? In fact it is propo-

tional to DT+1(i). To see this, let us unwrap DT+1(i):

DT+1(i) =
DT (i)e−αT yihT (xi)

ZT

=
DT−1(i)e−(αT−1yihT−1(xi)+αT yihT (xi))

ZT−1ZT
= . . .

=
1
me
−

∑T
t=1 αtyiht(xi)∏T
t=1 Zt

=
1
m

∑m
i=1 exp

{
−yifT (xi)

}∏T
t=1 Zt

As DT+1(i) is a distribution over training examples,
∑m
i=1DT+1(i) = 1. This implies that the exponential

loss, 1
m

∑m
i=1 exp

{
−yifT (xi)

}
, equals

∏T
t=1 Zt, the product of the normalization factors at all rounds.
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What can we say about each Zt? Note that

Zt =

m∑
i=1

Dt(i)e
−αtyiht(xi)

=
∑

i:yi=ht(xi)

Dt(i)e
−αt +

∑
i:yi 6=ht(xi)

Dt(i)e
αt

= (1− εt)e−αt + εte
αt

= (1− εt)
√

εt
1− εt

+ εt

√
1− εt
εt

= 2
√
εt(1− εt) ≤

√
1− 4γ2 ≤ exp

{
−2γ2

}
.

Therefore,
∏T
t=1 Zt is at most exp

{
−2Tγ2

}
, which concludes that the training error of HT is at most

exp
{
−2Tγ2

}
.

3 Margin bound of Boosting

An intriguing feature of AdaBoost is that, it is “immune” to overfitting. When the number of iterations
T increases, one should expect the returned classifier to be more complex - specifically, if at each round,
weak learner chooses classifier ht from some base hypothesis class H, then HT (x) = sign(

∑T
t=1 αtht(x))

can be seen as coming from the hypothesis class of weighted majority vote over the base classifiers: HT ={∑T
t=1 αtht(x) : ∀t, αt ∈ R, ht ∈ H

}
. As T grows, it can be shown that the VC dimension of HT also grows

(specifically, in the order of T VC(H) ). By a straightforward application of VC theory, we have that with
high probability,

err(HT , D) ≤ err(HT , S) +O(

√
T VC(H)

m
).

Therefore, according to VC theory, AdaBoost is expected to overfit, as the generalization bound on the right
hand side is growing.

However, it is noted in many datasets that as T grows, the generalization error of the classifier output by
AdaBoost keeps decreasing, even if training error already reaches zero! What is going on in AdaBoost? To
explain the discrepancy between the theory and the experiments, works have shown that similar to SVM,
AdaBoost also implicitly performs margin maximization [Schapire et al., 1998]. Moreover, similar to linear
classifiers, there is a theory of margin-based generalization error bounds for voting classifiers [Schapire et al.,
1998, Breiman et al., 1998, Koltchinskii et al., 2002, Wang et al., 2011].

Theorem 2. Suppose H is finite. Define C(H) :=
{∑

h∈H αhh(x) :
∑
h∈H |αh| ≤ B1

}
be the set of voting

classifiers over H. Fix margin value γ ∈ (0, 1]. Then, with probability 1 − δ over the draw of m training
examples S, for all predictors f on C(H),

PD(yf(x) ≤ 0) ≤ PS(yf(x) ≤ γ) +O

B1

γ

√
ln |H|δ
m

 .

Remark. Note the similarity between this bound and the margin bound of linear classification we discussed
in the analysis of SVM. In fact this bound can also be viewed as a statement of linear classification: suppose
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each x is represented by a d = |H|-dimensonal vector φ(x) = (h(x))H, we can alternatively view the theorem

statement as: with probability 1− δ: for all w such that
∑d
i=1 |wi| ≤ B1,

PD(y
〈
w, φ(x)

〉
≤ 0) ≤ PS(y

〈
w, φ(x)

〉
≤ γ) +O

B1

γ

√
ln d

δ

m

 .

In light of the above connection, it is not hard to show a slight generalization of Theorem 2 in the context
of linear classification, allowing each example to have bounded `∞ norms.

Theorem 3. Suppose labeled data distribution D is support on
{
x ∈ Rd : ‖x‖∞ ≤ R∞

}
×{±1}. Fix margin

value γ ∈ (0, 1]. Then, with probability 1 − δ over the draw of m training examples S, for all predictors w
such that ‖w‖1 ≤ B1,

PD(y 〈w, x〉 ≤ 0) ≤ PS(y 〈w, x〉 ≤ γ) +O

B1R∞
γ

√
ln d

δ

m

 .

We usually refer to the Theorem 3 as a `1(predictor norm)-`∞ (example norm) margin bound, which is
in contrast with the `2-`2 margin bound for SVMs (Theorem 2 of the note on SVM). Let us make a detailed
comparison here. For notational simplicity, denote by Bp(v0, r) =

{
v : ‖v − v0‖p ≤ r

}
as the `p ball centered

at v0 with radius r.

Bound type Constraint on x Constraint on w Generalization error bound

`1-`∞ B∞(0, R∞) B1(0, B1) Õ(B1R∞
γ

√
1
m )

`2-`2 B2(0, R2) B2(0, B2) Õ(B2R2

γ

√
1
m )

Ignoring logarithmic factors, both bounds have the common term of 1
γ

√
1
m . So the key difference lies in

the factors B2R2 and B1R∞, respectively. Let us consider two settings:

1. Suppose all examples (x, y) are such that x ∈ B∞(0, R∞), and the predictor w of interest satisfies
w ∈ B1(0, B1). We already know that `1-`∞ generalization error bound has a factor of B1R∞.

It is also possible to apply `2-`2 generalization bound here. Specifically, the smallest `2 ball that
contains B∞(0, R∞) is B2(0,

√
dR∞) 1, and the smallest `2 ball that contains B1(0, B1) is B2(0, B1).

This implies that the `1-`∞ generalization bound is a factor of
√
d worse than the `2-`2 bound, when

applied to this setting.

2. Suppose all examples (x, y) are such that x ∈ B2(0, R2), and the predictor w of interest satisfies
w ∈ B2(0, B2). We already know that `2-`2 generalization error bound has a factor of B2R2.

It is also possible to apply `1-`∞ generalization bound here. Specifically, the smallest `∞ ball that
contains B2(0, R2) is B∞(0, R2), and the smallest `1 ball that contains B2(0, R1) is B1(0,

√
dR1). This

implies that `2-`2 generalization bound is a factor of
√
d worse than the `1-`∞ bound, when applied to

this setting.

Proof of Theorem 2. The proof uses the same line of reasoning as the `2-`2 margin bound. We can show
that (with details left to the reader) with probability 1− δ, for all f in C(H),

PD(yf(x) ≤ 0) ≤ PS(yf(x) ≤ γ) +

√
ln 2

δ

m
+

2

γ
ERadS(F). (1)

1To see this, draw a picture of a `∞ ball in 2d, and try to grow a `2 ball that is just enough to encapsulate it.
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Here F is the class of margin functions, each induced by one weighting over the base hypothesis class H:

F =
{
mα : ‖α‖1 ≤ B1

}
,

where
mα(x, y) = y

∑
h∈H

αhh(x).

We now bound the empirical Rademacher complexity RadS(F) for dataset S differently:

RadS(F) =
1

m
Eσ sup

α:‖α‖1≤B1

m∑
i=1

σiyi

∑
h∈H

αhh(xi)


=

1

m
Eσ sup

α:‖α‖1≤B1

m∑
i=1

σi

∑
h∈H

αhh(xi)


=

1

m
Eσ sup

α:‖α‖1≤B1

∑
h∈H

αh

m∑
i=1

σih(xi)

=
B1

m
Eσ sup

h∈H

∣∣∣∣∣∣
m∑
i=1

σih(xi)

∣∣∣∣∣∣ .
But we have seen this before! This is the Rademacher complexity (with absolute value sign) of class H. As
seen before, by Massart’s Lemma, the above is at most

1

m

√
m ln

(
2|H|

)
=

√
ln
(
2|H|

)
m

.

The proof is concluded by combining the above fact with Equation (1), along with simple algebra.
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