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Please complete the following set of problems. You are free to discuss with your classmates on
your solutions, but only at a high level; if that is the case, please mention your collaborators.
The exercise is due on Dec 3, 12:30pm, on Gradescope. You are free to cite existing theorems from the
textbooks and course notes.

Problem 1

In this exercise we will prove a special case of von Neumann’s minimax theorem using online learning.

Theorem 1 (von Neumann’s minimax theorem). For any matrix M ∈ [0, 1]n×n,

min
p∈∆n−1

max
q∈∆n−1

p>Mq = max
q∈∆n−1

min
p∈∆n−1

p>Mq. (1)

1. (Optional) Show that for any function f(x, y) and domains X and Y, we always have

min
x∈X

max
y∈Y

f(x, y) ≥ max
y∈Y

min
x∈X

f(x, y),

and use it to conclude that the left hand side is always at least the right hand side in Equation (1).

2. Consider two players R and C (denoting Row and Column respectively) playing a repeated game of T
rounds against each other. At time t, R (resp. C) selects a probability distribution of rows pt ∈ ∆n−1

(resp. qt ∈ ∆n−1). For each player, it is associated with a DTOL game: for R (resp. C), its loss vector
at time t is defined as `R,t = Mqt (resp. `C,t = (1−M)>pt, where 1 is the n× n matrix of all 1’s). R

and C applies the Hedge algorithm with learning rate
√

8 lnn
T on their respective loss vectors.

(a) Write down the regret guarantees provided by Hedge for both players (your answer should be in
terms of M , pt, qt’s.)

(b) Define p̄ = 1
T

∑T
t=1 pt and q̄ = 1

T

∑T
t=1 qt. Show that

max
q∈∆n−1

p̄>Mq − min
p∈∆n−1

p>Mq̄ ≤
√

2 lnn

T
, (2)

and use this to conclude Equation (1).

3. Suppose we have a modified rock-paper-scissor game where the game matrix M is defined as follows:

R P S
R 0.5 0.7 0
P 0.2 0.5 1
S 1 0 0.5

Write a piece of code that simulates the learning process of both players in item 2, and plot the left
hand side of Equation (2) as a function of T , for T = 10i, i = 1, 2, . . . , 6. Use this to experimentally
verify the correctness of Equation (2). What are the p̄ and q̄’s for each T?
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Problem 2 (Optional)

Show that in realizable online classification with a finite hypothesis class H ⊂ (X → {0, 1}), if at time t,

one predicts label 1 with probability
|V +

t |
|Vt| (in other words, ŷt =

|V +
t |
|Vt| ), the algorithm has a mistake bound of

ln |H|, that is,
T∑

t=1

|ŷt − yt| ≤ ln |H|.

Problem 3 (Optional)

Consider realizable online classification with hypothesis class Ldim(H) = ∞. If the learner is allowed to
randomly predict a label at every timestep, can it achieve a finite mistake bound? Why or why not?

Problem 4 (Optional)

Show that Hedge with learning rate η > 0 has a regret as follows:

T∑
t=1

〈pt, `t〉 −
N

min
i=1

T∑
t=1

`t,i ≤
lnN

η
+ η

T∑
t=1

N∑
i=1

pt,i`
2
t,i.

You can use the fact that ex ≤ 1 + x+ x2 for x ≤ 1.
(This bound has many useful applications, for example, adversarial multi-armed bandits, as we will see

in the next few lectures.)
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