
CSC 665: Homework 3

Chicheng Zhang

October 31, 2019

Please complete the following set of problems. You must do the exercises completely on your own (no
collaboration allowed). The exam is due on Nov 14, 12:30pm, on Gradescope. You are free to cite
existing theorems from the textbooks and course notes.

Problem 1

Consider the homogeneous, soft-margin SVM optimization problem:

minimize
w,ξ

λ

2
‖w‖2 +

n∑
i=1

ξi (1)

s. t. yi(〈w, xi〉) ≥ 1− ξi, ∀i ∈ {1, . . . , n} , (2)

ξi ≥ 0, ∀i ∈ {1, . . . , n} .

1. Introducing dual variables αi ≥ 0 for each constraint i, i ∈ {1, . . . , n} and βi ≥ 0 for each constraint i,
i ∈ {1, . . . , n}, compute the Lagrangian function L(w, ξ, α, β).

2. Derive the dual optimization problem.

3. Use the KKT condition to interpret: which of the training examples are “support vectors” that con-
tribute to the SVM solution?

Problem 2

Suppose we have k finite hypothesis classes H1, . . . ,Hk, and m training examples drawn iid from D. In
addition we are given the promise that there exists i0 ∈ {1, . . . , k} such that minh∈Hi0

err(h,D) = 0 (but
we don’t know the identity of i0); Can we design an algorithm that produces classifiers with generalization

error O(
ln |Hi0 |
m ) with high probability? Why or why not?

Problem 3

Show that for AdaBoost, at iteration t, the updated distribution Dt+1 satisfies that

m∑
i=1

Dt+1(i)1(ht(xi) 6= yi) =
1

2
.

Why is this a reasonable update?
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Problem 4

In this exercise, we conduct experiment with AdaBoost with a simple benchmark dataset named ringnorm.

1. Generate 100 training and 100 test examples from the following distributionD supported on R10×{±1}:
PD(Y = −1) = PD(Y = +1) = 1

2 , X|Y=+1 ∼ N((0, . . . , 0), 4I); X|Y=−1 ∼ N(( 2√
20
, . . . , 2√

20
), I).

2. Define base hypothesis class H =
{
σ · (2I(xi ≤ t)− 1), σ ∈ {±1} , i ∈ {1, . . . , d} , t ∈ R

}
as the set of

bi-directional decision stumps. Let the weak learner B be: given a weighted dataset, return the classifier
h ∈ H that has the smallest weighted error. Implement AdaBoost with B, and run it for 300 iterations.
At time t, suppose the following cumulative voting classifier

Ht(x) = sign(ft(x)), fs(x) =

t∑
s=1

αshs(x)

is produced.

Plot AdaBoost’s learning curves: the training error of Ht, the test error of Ht and the training expo-
nential loss of ft as a function of iteration t. What do you see?

3. Given a voting classiifer ft, define its normalization as

f̄t(x) =
ft(x)∑t
s=1 αs

=

∑t
s=1 αshs(x)∑t

s=1 αs
. (3)

Now, given an example (x, y), define its normalized margin at timestep t as yf̄t(x). At iterations
t = 10, 30, 50, 100, 300, show histograms of normalized margins of training examples. Do you see any
tendency at t increases?

Problem 5 (No need to submit)

Show that AdaBoost produces large-margin voting classifiers under the γ-weak learning assumption. If at
every iteration t, εt ≤ 1

2 − γ, then after T rounds, the margin error of the output classifier will also decrease
exponentially in T . Specifically, show:

1

m

m∑
i=1

1(yif̄T (xi) ≤ γ) ≤ exp
{
−Ω(Tγ2)

}
.

where f̄T is the normalized voting classifier defined as per Equation (3).
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