
CSC 665: Homework 2

Chicheng Zhang

October 14, 2019

Please complete the following set of exercises. You must write down your solutions on your own. If
you have discussed with your classmates on any of the questions, please indicate so in your solutions. The
homework is due on Oct 15, 12:30pm, on Gradescope. You are free to cite existing theorems from the
textbook and course notes.

Problem 1

Do Exercise 2.3 in (Shalev-Shwartz and Ben-David, 2014). For item 2, you can assume that the joint
distribution of (X1, X2) is continuous over R2.

Problem 2

1. Show the following inequality: for positive a, b and x, if x > 2a ln(2a) + 2b, then x > a lnx+ b.

2. Show the following basic inequality: for n, d such that n ≥ 2 and n ≥ d,
(
n
≤d
)
≤ nd+1.

3. Consider l hypothesis classes H1,H2,Hl, where VC(Hi) = v ≥ 1. Define H , ∪li=1Hi. Show that
there exists some constant c > 0 such that

VC(H) ≤ c ·
(
v ln(v) + ln(l)

)
.

4. Let H =
{

sign(〈w, x〉) : w ∈ Rd, | {i : wi 6= 0} | = k
}

be the set of k-sparse homogenenous linear classi-
fiers in Rd, where k ≤ d. Show that there exists some constant c > 0 such that

VC(H) ≤ c · (k ln d) .

5. Consider l hypothesis classes H1, . . . ,Hl, where VC(Hi) = di ≥ 1. Suppose f is a function from

{±1}l to {±1} (for example, the majority function f(z1, . . . , zl) = sign(
∑l
i=1 zi) or the parity function

f(z1, . . . , zl) =
∏l
i=1 zi). Define H ,

{
f(h1(x), . . . , hl(x)) : h1 ∈ H1, . . . , hl ∈ Hl

}
. Show that there

exists some constant c > 0 such that

VC(H) ≤ c

 l∑
i=1

di

 ln

 l∑
i=1

di

.
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Problem 3

In this exercise, we will show that, under the realizable setting, with hypothesis class H having VC dimension
d, ERM (in fact, the consistency algorithm) will have a PAC sample complexity of O

(
1
ε (d ln 1

ε + ln 1
δ )
)
.

Suppose S = {Z1, . . . , Zm} a set of m training examples drawn iid from distribution D, where each Zi =
(Xi, Yi) is a labeled example. In addition, F =

{
1(h(x) 6= y) : h ∈ H

}
is the zero-one loss function class.

Our proof will mostly follow the steps for showing agnostic PAC sample complexity given in the lecture.

1. Double Sampling Trick. Fix a training set S. Suppose ESf(Z) = 0 and EDf(Z) ≥ ε. Show that
for a fresh set of random examples S′ of size m (m ≥ 16

ε ) sampled iid from D:

PS′∼Dm

(
ES′f(Z) ≥ ε

2

)
≥ 1

2
.

2. Conditioning. Denote by events

E′ ,

{
there exists f ∈ F ,ESf(Z) = 0,ES′f(Z) ≥ ε

2

}
,

E ,
{

there exists f ∈ F ,ESf(Z) = 0,EDf(Z) ≥ ε
}
.

Show PS,S′∼Dm(E′|E) ≥ 1
2 , and conclude that PS∼Dm(E) ≤ 2PS,S′∼Dm(E′).

3. Symmetrization. Introduce σ = (σ1, . . . , σm) where each σi ∈ {±1}. Denote by

(Wi,W
′
i ) =

{
(Zi, Z

′
i) σi = +1,

(Z ′i, Zi) σi = −1.

Show that

PS,S′∼Dm(E′) = PS,S′∼Dm,σ∼Rm

exists f ∈ F ,
m∑
i=1

f(Wi) = 0,

m∑
i=1

f(W ′i ) ≥
mε

2

 ,

where R is the Rademacher distribution, i.e. uniform in {±1}.

4. The randomness in Rademacher random variables. Fix two size m training sets S and S′. Show
that for a fixed classifier f in F ,

Pσ∼Rn

 m∑
i=1

f(Wi) = 0,

m∑
i=1

f(W ′i ) ≥
mε

2

 ≤ exp

(
−mε

4

)
.

5. Use the above items to conclude that for m ≥ 16
ε ,

PS∼Dm(there exists f ∈ F ,ESf(Z) = 0,EDf(Z) ≥ ε) ≤ 2S(F , 2m) exp

{
−mε

4

}
.

In addition, show that ERM has a PAC sample complexity of O
(
1
ε (d ln 1

ε + ln 1
δ )
)
.
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Problem 4

In this exercise, we develop sample complexity lower bounds for realizable PAC learning using Le Cam’s
method and Assouad’s method. Suppose hypothesis class H has VC dimension d ≥ 2, and it shatters
examples z0, z1, . . . , zd−1. In additon, suppose ε, δ ∈ (0, 18 ) are target error and target failure probability. A
learning algorithm A is a mapping from training set S to {±1}. In the following, you can use the elementary
fact that for x ∈ (0, 12 ), e−x ≥ 1− x ≥ e−2x.

1. Consider D−1 and D+1 as follows: for every i in {±1},

Di(x, y) =


1− 2ε, (x, y) = (z0,−1),

2ε, (x, y) = (z1, i),

0 otherwise.

Note that minh∈H err(h′, Di) = 0 for both i ∈ {±1}. For every j in {±1}, denote by Pj((xi, yi)
m
i=1) =∏m

i=1Dj(xi, yi) the distribution over training sets (observations). Use Le Cam’s method to show that
for any hypothesis tester f , there exists an i in {±1}, such that

Pi(f(S) 6= i) >
1

2
(1− 4ε)m.

2. Conclude that for any learning algorithm A, if sample size m ≤ 1
8ε ln 1

4δ , then there exists an i in {±1},

Pi(err(ĥ, Di) > ε) > δ.

3. For every τ ∈ {±1}d−1, consider Dτ as follows:

Dτ (x, y) =


1− 4ε, (x, y) = (z0,−1),
4ε
d−1 , (x, y) = (zi, τi) for somei ∈ {1, . . . , d− 1} ,
0 otherwise.

Note that minh∈H err(h′, Dτ ) = 0 for all τ ∈ {±1}d−1. For every τ , denote by Pτ ((xi, yi)
m
i=1) =∏m

i=1Dτ (xi, yi) the distribution over training sets (observations).

Use Assouad’s method to show that for any hypothesis tester f1, . . . , fd−1, there exists τ ∈ {±1}d−1,

Eτ

d−1∑
j=1

1(fj(S) 6= τj)

 > d− 1

2

(
1− 4ε

d− 1

)m
.

4. Conclude that for any learning algorithm A, suppose that sample size m ≤ d−1
128ε , then there exists a

τ ∈ {±1}d, such that

Pτ (err(ĥ, Dτ ) > ε) >
1

4
.

Hints

2.1 Use the elementary fact that ln(z) ≤ z − 1 for z = x
2a .

2.2 Use the elementary fact that
(
n
i

)
≤ ni.
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2.3 (1) consider S of size n shattered by H. We know that |ΠH(S)| = 2n. Use Sauer’s Lemma to obtain
an upper bound on |ΠH(S)| in terms of v. (2) consider using the contrapositive of item 1.

2.4 Write H as a union of
(
d
k

)
hypothesis classes, each of which has VC dimension k, then apply item 3.)

3.1 Use Chernoff bound for Bernoulli distributions (the version with exponent −mpµ
2

4 ).

3.4 Consider three cases: (1) there exists some i, (f(Zi), f(Z ′i)) = (1, 1); (2)
∑m
i=1 f(Zi) + f(Z ′i) <

mε
2 ;

(3) both (1) and (2) are not satisfied. Observe that in the first two cases, the probability is identically
zero.

4.1 Consider observation S = ((z0,−1), . . . , (z0,−1)). Show that P−1(S) = P+1(S).

4.2 Define an appropriate hypothesis tester f that depends on A.

4.3 Define Aj =
{
S = (xi, yi)

m
i=1 : xi 6= zj for all i

}
. Show that for every τ

j∼ τ ′, Pτ (S) = Pτ ′(S) for all S

in Aj . In addition, for σ ∈
{
τ, τ ′

}
, Pσ(S ∈ Aj) > 7

8 . Intuitively, seeing only examples other than zj
does not help determining the optimal classifier’s labeling on zj .

4.4 First show that
∑d−1
j=1 1(fj(S) 6= τj) >

d−1
4 with probability > 1

4 . Then define an appropriate hypoth-
esis tester f = (f1, . . . , fd−1) that depends on A.

Problem 5 (No need to submit)

In this problem, we develop an alternative proof of Sauer’s Lemma: any hypotheis classH with VC dimension
d can have at most

(
n
≤d
)

labelings on any dataset S = {z1, . . . , zn}. Throughout, we will be using the notation
that (

{1, . . . , n}
d+ 1

)
,
{

(i1, . . . , id+1) : 1 ≤ i1 < . . . < id+1 ≤ n
}

to denote the set of (d+ 1)-tuples whose entries are distinct. Note that
∣∣∣({1,...,n}d+1

)∣∣∣ =
(
n
d+1

)
.

1. Show that for any indices I = (i1, . . . , id+1) ∈
({1,...,n}

d+1

)
, there exists a string sI ∈ {±1}d+1

, such that
none of the labelings in

LI =
{
b ∈ {±1}n : (bi1 , . . . , bid+1

) = sI
}

are achievable by classifiers in H.

2. Show the following basic facts:

(a) For a finite set A and a function f , denote by f(A) =
{
f(a) : a ∈ A

}
. Then |f(A)| ≤ |A|, where

|B| denotes the cardinality of set B.

(b) Suppose I is a set of indices. Given a collection of sets {LI}I∈I and a function f ,∣∣∣∣∣∣
⋃
I∈I

f(LI)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
⋃
I∈I

LI

∣∣∣∣∣∣ . (1)

3. Use the above two facts to conclude that∣∣∣∣∣∣∣
⋃

I∈({1,...,n}
d+1 )

LI

∣∣∣∣∣∣∣ ≥
n∑

i=d+1

(
n

i

)
.

(Hint: consider functions f1, . . . , fn, where fi(s1, . . . , sn) = (s1, . . . , si−1,−1, si+1, . . . , sn) is the func-
tion that sets a length n string’s i-th entry to −1. Iteratively applying Equation (1) for f1, . . . , fn,
what do you get?)
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4. Use item 3 to conclude that |ΠH(S)| ≤
(
n
≤d
)
.
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