
CSC 665: Homework 1

Chicheng Zhang

October 12, 2019

Please complete the following set of exercises on your own. The homework is due on Oct 1, 12:30pm,
on Gradescope. You are free to cite existing theorems from the textbook and course notes.

Problem 1

For a random variable Z with mean EZ = 0, we call Z is v-subgaussian, if

ψZ(t) = lnEetZ ≤ vt2

2
.

Show the following:

1. If Z has Gaussian distribution N(0, σ2), then Z is σ2-subgausssian.

2. If Z take values within interval [a, b], then Z is (b−a)2
4 -subgaussian.

3. If Z1, . . . , Zn are independent, and each Zi is vi subgaussian, then
∑n
i=1 Zi is

∑n
i=1 vi-subgaussian.

4. If Z is v-subgaussian, then

P(|Z| ≥ t) ≤ 2 exp

{
− t

2

2v

}
.

Problem 2

In this exercise we give an alternative proof of the Chernoff bound for Bernoulli random variables: suppose
X1, . . . , Xn are iid and from Bernoulli(p), define X̄ = 1

n

∑n
i=1Xi, then,

P(X̄ ≥ q) ≤ exp
{
−n kl(q, p)

}
, q ≥ p, (1)

P(X̄ ≤ q) ≤ exp
{
−n kl(q, p)

}
, q ≤ p. (2)

1. Show that

P(X̄ ≥ q) =
∑

m:m≥nq

(
n

m

)
pm(1− p)n−m.

2. Use the elementary inequality that
(
n
m

)
qm(1− q)n−m ≤ 1, show that for m ≥ nq,(

n

m

)
pm(1− p)n−m ≤

(
p

q

)nq (
1− p
1− q

)n(1−q)
.
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3. Use the above two items to conclude that P(X̄ ≥ q) ≤ (n+ 1) exp
{
−n kl(q, p)

}
.

4. Note that compared to Equation 1, the above bound is has an additional factor of n on the right
hand side. Use the elementary inequality

∑
m≥nq

(
n
m

)
qm(1− q)n−m ≤ 1 as a starting point, along with

insights you gained from items 1 and 2 to show Equation (1).

5. Repeat the proof for the lower tail bound (Equation (2)).

Problem 3

In this exercise we will use basic concentration inequalities to show that, we can find exponentially many
points on the unit sphere in Rd that are far away from each other. Specifically, consider n random vectors
X1, X2, . . . , Xn in Rd, where for each i, Xi = 1√

d
(Zi,1, . . . , Zi,d). Here

{
Zi,j

}
i∈{1,...,n},j∈{1,...,d}’s are all

independent and identically distributed, and Zi,j takes value 1 with probability 1/2, and takes value −1 with
probabilty 1/2.

1. Check that all Xi’s has unit length, i.e. ‖Xi‖2 = 1.

2. Use Hoeffding’s Inequality to show that for any fixed pair i, j ∈ {1, . . . , n}, i 6= j,

P(|
〈
Xi, Xj

〉
| ≥ 1

2
) ≤ 2 exp

{
−d

8

}
.

3. Suppose n = exp
{
d
32

}
. Show that with nonzero probability, for all pairs i, j ∈ {1, . . . , n}, i 6= j, the

angle between Xi and Xj is in [π3 ,
2π
3 ].

Problem 4

Suppose D is a distribution over [0, 1] × {−1,+1} such that DX , the marginal of D over X = [0, 1], is
uniform. In addition,

P (Y = +1|x) =

{
0 x ≤ 1

2 ,

1 x > 1
2

,

i.e. the distribution is separable by a threshold classifier with threshold 1
2 . Suppose training examples

(X1, Y1), . . . , (Xn, Yn) are drawn iid from D. Now consider the following classifier ĥ:

ĥ(x) =

{
Yi x = Xi for some i ∈ {1, . . . , n} ,
−1 otherwise.

(For simplicity, assume that all Xi’s are distinct, which also happens with probability 1.)

1. Calculate err(ĥ, S).

2. Calculate err(ĥ, D). What is the value of err(ĥ, S)− err(ĥ, D)?

3. It may be tempting to use following argument to argue the concentration of err(ĥ, S) to err(ĥ, D).

Define random variables Zi = 1(ĥ(Xi) 6= Yi) for all i in {1, . . . , n}, therefore, Hoeffding’s inequality,
with probability 1− δ,

| err(ĥ, S)− err(ĥ, D)| ≤

√
ln 1

δ

2n
.

Does this contradict the results we got from item 2? Why?
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Problem 5

In this exercise, we will unify the analysis of O( 1
ε )-style sample complexity for the realizable case and the

O( 1
ε2 )-style sample complexity for the agnostic case, by revisiting the empirical risk minimization algorithm.

Suppose H is a finite hypothesis class, D is a distribution over labeled examples, and S is a training set of
size m drawn iid from D. Denote by ν? = minh∈H err(h,D) as the optimal generalization error, and ĥ the
output of the empirical risk minimzation algorithm.

1. Use Chernoff bound for Bernoulli random variables, show that for a fixed classifier h, with probability
1− δ,

kl(err(h, S), err(h,D)) ≤
ln 2

δ

m
.

2. Use the above reasoning to conclude that with probability 1− δ, for all classifiers h in H,

| err(h, S)− err(h,D)| ≤

√
2 max(err(h, S), err(h,D))

ln 2|H|
δ

m
.

(Hint: you can use the fact that kl(q, p) ≥ (q−p)2
2max(p,q) .)

3. Show that with probability 1− δ, for all classifiers h in H,

err(h, S) ≤ err(h,D) +

√
err(h,D)

2 ln 2|H|
δ

m
+

2 ln 2|H|
δ

m
,

err(h,D) ≤ err(h, S) +

√
err(h, S)

2 ln 2|H|
δ

m
+

2 ln 2|H|
δ

m
.

(Hint: you can use the elementary fact that for A,B,C > 0, A ≤ B+C
√
A implies A ≤ B+C2+C

√
B.)

4. Show that with probability 1− δ, ĥ, the training error minimizer over H, satisfies that

err(ĥ, D) ≤ ν? + 6

√
2 ln 2|H|

δ

m
ν? + 8

ln 2|H|
δ

m
.

(Hint: you may find the following elementary facts useful: for A,B > 0,
√
AB ≤ A + B,

√
A+B ≤√

A+
√
B. If you get other constants on the right hand side, no worries - you will still get full credit.)

5. Conclude that:

(a) There exists a function mA such that mA(ε, δ) = O(
ln |H|+ln 1

δ

ε2 ), when m ≥ mA(ε, δ), for all

distributions D, err(ĥ, D) ≤ ν? + ε with probability 1− δ.

(b) There exists a function mR such that mR(ε, δ) = O(
ln |H|+ln 1

δ

ε ), when m ≥ mR(ε, δ), for all

distributions D such that ν? = 0, err(ĥ, D) ≤ ε with probability 1− δ.
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