Stability, regularization, and generalization

Chicheng Zhang

CSC 588, University of Arizona

So far, we have seen generalization error analyses by establishing "uniform convergence" on hypothesis classes, assuming $\hat{h} \in \mathcal{H}$, where the key step is:

$$L_D(\hat{h}) - L_S(\hat{h}) \leq \sup_{h \in \mathcal{H}} (L_D(h) - L_S(h))$$

Can we establish generalization error bounds on models output by learning algorithms that do not use fixed hypothesis classes?

- \cdot Algorithm ${\cal A}$ is stable, if small changes in input dataset does not change the output model by much.
- \cdot \mathcal{A} is stable $\implies \mathcal{A}$ is unlikely to capture the idiosyncrasies of individual datasets, but rather property of the distribution
- E.g. regularized loss minimization:

$$\hat{W} \leftarrow \underset{w}{\operatorname{argmin}} \underbrace{\lambda \cdot R(w)}_{\text{complexity regularizer}} + \underbrace{\sum_{i=1}^{m} \ell(w, z_i)}_{\text{empirical risk}}$$

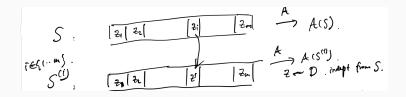
 $\lambda \uparrow \implies \hat{w}$ less affected by individual training examples \implies more stable

Formal setting

- Training dataset $S = (z_1, \ldots, z_m) \stackrel{iid}{\sim} D$
- Learning model parameterized by $w \in \mathbb{R}^d$
- Loss function ℓ : $\ell(w, z) \in \mathbb{R}$ (e.g. 0-1 loss, hinge loss, ...)
- Generalization loss of model w: $L_D(w) = \mathbb{E}_{z \sim D}\ell(w, z)$
- Training (empirical) loss of model w: $L_{S}(w) = \mathbb{E}_{z \sim S} \ell(w, z) = \frac{1}{|S|} \sum_{z \in S} \ell(w, z)$
- learning algorithm A; output model $\hat{w} = A(S)$
- Goal: bound \hat{w} 's expected generalization loss:

$$\mathbb{E}_{S \sim D^{m}} \left[L_{D}(\hat{w}) \right] = \underbrace{\mathbb{E}_{S \sim D^{m}} \left[L_{S}(\hat{w}) \right]}_{\text{expected empirical loss}} + \underbrace{\mathbb{E}_{S \sim D^{m}} \left[L_{D}(\hat{w}) - L_{S}(\hat{w}) \right]}_{\text{expected generalization gap}}$$

Stability: an intuitive formulation



- Compare $\ell(\mathcal{A}(S), z_i)$ vs. $\ell(\mathcal{A}(S^{(i)}), z_i)$
- If the former is much smaller, than \mathcal{A} "overfits" on z_i

Definition

Learning algorithm \mathcal{A} is on-average-replace-one (OARO) stable with rate function $g: \mathbb{N} \to \mathbb{R}$, if for any distribution D, any sample size m,

$$\mathbb{E}_{(S,z')\sim D^{m+1},i\sim \text{Unif}([m])}\left[\ell(\mathcal{A}(S^{(i)}),z_i)-\ell(\mathcal{A}(S),z_i)\right]\leq g(m),$$

where $[m] := \{1, ..., m\}.$

Remarks:

- Usually denote by $\hat{w} = \mathcal{A}(S)$ and $\hat{w}^{(i)} = \mathcal{A}(S^{(i)})$
- \cdot Intuitively, $\mathcal A$ more stable \implies can choose g to be smaller

Theorem If \mathcal{A} is OARO-stable with rate g, then

$$\mathbb{E}_{S\sim D^m}\left[L_D(\mathcal{A}(S))-L_S(\mathcal{A}(S))\right]\leq g(m).$$

Proof. It suffices to show

$$\mathbb{E}_{S \sim D^{m}} \left[L_{D}(\mathcal{A}(S)) - L_{S}(\mathcal{A}(S)) \right]$$

$$= \mathbb{E}_{(S, z') \sim D^{m+1}, i \sim \text{Unif}([m])} \left[\ell(\mathcal{A}(S^{(i)}), z_{i}) - \ell(\mathcal{A}(S), z_{i}) \right]$$

We will look at the first and the second terms on the LHS / RHS respectively.

Stability implies generalization (cont'd)

Proof (cont'd). For the second term:

$$\mathbb{E}_{S \sim D^{m}} \left[L_{S}(\mathcal{A}(S)) \right] \stackrel{?}{=} \mathbb{E}_{(S, Z') \sim D^{m+1}, i \sim \mathrm{Unif}([m])} \left[\ell(\mathcal{A}(S), Z_{i}) \right]$$

Observe:

$$\mathbb{E}_{(S,Z')\sim D^{m+1},i\sim \text{Unif}([m])} \left[\ell(\mathcal{A}(S), Z_i) \right]$$

$$= \mathbb{E}_{S\sim D^{m+1}} \left[\mathbb{E}_{i\sim \text{Unif}([m])} \left[\ell(\mathcal{A}(S), Z_i) \right] \right]$$

$$= \mathbb{E}_{S\sim D^{m+1}} \left[\frac{1}{m} \sum_{i=1}^m \ell(\mathcal{A}(S), Z_i) \right]$$

$$= \mathbb{E}_{S\sim D^{m+1}} \left[L_S(\mathcal{A}(S)) \right]$$

Stability implies generalization (cont'd)

Proof (cont'd). For the first term:

$$\mathbb{E}_{S \sim D^{m}} \left[L_{D}(\mathcal{A}(S)) \right] \stackrel{?}{=} \mathbb{E}_{(S, Z') \sim D^{m+1}, i \sim \mathrm{Unif}([m])} \left[\ell(\mathcal{A}(S^{(i)}), Z_{i}) \right]$$

Observe: for every i, $(S^{(i)}, z_i) \stackrel{d}{=} (S, z') \stackrel{d}{=} D^{m+1}$, Therefore,

$$\mathbb{E}_{(S,z')\sim D^{m+1},i\sim \text{Unif}([m])}\left[\ell(\mathcal{A}(S^{(i)}), Z_i)\right]$$

$$= \mathbb{E}_{i\sim \text{Unif}([m])}\left[\mathbb{E}_{(S,z')\sim D^{m+1}}\left[\ell(\mathcal{A}(S^{(i)}), Z_i)\right]\right]$$

$$= \mathbb{E}_{i\sim \text{Unif}([m])}\left[\mathbb{E}_{(S,z')\sim D^{m+1}}\left[\ell(\mathcal{A}(S), Z')\right]\right]$$

$$= \mathbb{E}_{i\sim \text{Unif}([m])}\left[\mathbb{E}_{S\sim D^m}\left[L_D(\mathcal{A}(S))\right]\right]$$

ℓ_2 -Regularization gives stability

Assume:

- $\ell(w,z)$ is ρ -Lipschitz in w wrt ℓ_2 norm,
 - i.e. for any z, any w_1, w_2 ,

$$|\ell(w_1, z) - \ell(w_2, z)| \le \rho ||w_1 - w_2||_2$$

- A sufficient condition: ℓ is differentiable in w and $\|\nabla \ell(w, z)\|_2 \leq \rho$
- $\ell(w, z)$ is convex in w
 - $\cdot\,$ e.g. ℓ is hinge / logistic / exponential loss
 - does not capture 0-1 loss: $\ell(w, (x, y)) = I(y \langle w, x \rangle \leq 0)$
- $\cdot \ \mathcal{A}$ takes input S, outputs

$$\hat{W} = \underset{W}{\operatorname{argmin}} \left(\frac{\lambda}{2} \|W\|_2^2 + L_{\mathsf{S}}(W) \right)$$

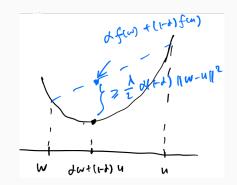
We will show that, \mathcal{A} is $g(m) := \frac{2\rho^2}{\lambda m}$ -OARO-stable.

Key tool: strong convexity

Definition

Function f in convex domain $C \subset \mathbb{R}^d$ is said to be λ -strongly convex (SC) with respect to norm $\|\cdot\|$, if $\forall w, u \in C, \alpha \in (0, 1)$:

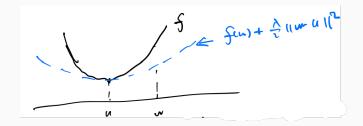
$$f(\alpha w + (1 - \alpha)u) \le \alpha f(w) + (1 - \alpha)f(u) - \frac{\lambda}{2}\alpha(1 - \alpha)||w - u||^2$$



- $\cdot f$ is 0-SC $\iff f$ is convex
- For $f(x) = \langle a, x \rangle + b$, is $f \lambda$ -SC with $\lambda > 0$?
- $f(w) = \frac{\lambda}{2} \|w\|_2^2$ is λ -SC wrt $\|\cdot\|_2$
- If f is λ -SC wrt $\|\cdot\|$, g is convex, then h = f + g is λ -SC wrt $\|\cdot\|$

Lemma If f is λ -SC wrt $\|\cdot\|$ and $u = \operatorname{argmin}_{w \in C} f(w)$, then for all w,

$$f(w) - f(u) \ge \frac{\lambda}{2} \|w - u\|^2$$



Strong convexity: behavior around minimizer

Proof.

We only show the special case when f is differentiable and $C = \mathbb{R}^d$ (the general proof needs to use *subgradient*, introduced later in the course)

1. *u* is the minimizer $\implies \nabla f(u) = 0$

2.
$$f$$
 is λ -SC $\implies \forall w, \alpha$,

$$\frac{f(u+\alpha(w-u))-f(u)}{\alpha} \le f(w)-f(u)-\frac{\lambda}{2}(1-\alpha)\|w-u\|^2$$

3. Letting $\alpha \rightarrow$ 0:

$$\begin{array}{l} \cdot \ \operatorname{RHS} \to f(w) - f(u) - \frac{\lambda}{2} \|w - u\|^2 \\ \cdot \ \operatorname{LHS} = \frac{g(\alpha) - g(0)}{\alpha - 0}, \text{ where } g(\alpha) = f(u + \alpha(w - u)). \\ \operatorname{LHS} \to g'(\alpha)\big|_{\alpha = 0} = \left\langle \nabla f(u + \alpha(w - u)), w - u \right\rangle\big|_{\alpha = 0} = \left\langle \nabla f(u), w - u \right\rangle = 0 \end{array}$$

Theorem

If $\ell(w,z)$ is convex, and ρ -Lipschitz in w wrt ℓ_2 norm, then algorithm $\mathcal A$ that outputs

$$\hat{W} = \underset{W}{\operatorname{argmin}} \left(\frac{\lambda}{2} \|W\|_{2}^{2} + L_{S}(W) \right)$$

is
$$\frac{2\rho^2}{\lambda m}$$
-OARO-stable.

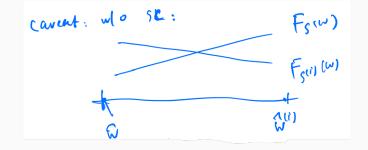
Intuition:

$$\hat{w} = \operatorname*{argmin}_{w} F_{S}(w), \text{ where } F_{S}(w) := \frac{\lambda}{2} \|w\|_{2}^{2} + L_{S}(w)$$

$$\hat{w}^{(i)} = \operatorname*{argmin}_{w} F_{S^{(i)}}(w), \text{ where } F_{S^{i}}(w) := \frac{\lambda}{2} ||w||_{2}^{2} + L_{S^{(i)}}(w)$$

Why would \hat{w} and $\hat{w}^{(i)}$ be close?

The importance of strong convexity



 $F_{\rm S}, F_{\rm S^i} \lambda$ -SC \implies can rule out pathological cases where $\hat{w} - \hat{w}^{(i)}$ is large

l₂-Regularization gives stability (cont'd)

Proof. Local property of strong convexity \implies

$$F_{\mathsf{S}}(\hat{w}^{(i)}) - F_{\mathsf{S}}(\hat{w}) \geq \frac{\lambda}{2} \|\hat{w}^{(i)} - \hat{w}\|_2^2$$

$$F_{S^{(i)}}(\hat{w}) - F_{S^{(i)}}(\hat{w}^{(i)}) \ge \frac{\lambda}{2} \|\hat{w}^{(i)} - \hat{w}\|_2^2$$

Summing up the two inequalities and regrouping,

$$\left(F_{S}(\hat{w}^{(i)}) - F_{S^{(i)}}(\hat{w}^{(i)})\right) - \left(F_{S}(\hat{w}) - F_{S^{(i)}}(\hat{w})\right) \ge \lambda \|\hat{w}^{(i)} - \hat{w}\|_{2}^{2}$$

Note

LHS =
$$\left(\frac{1}{m}\ell(\hat{w}^{(i)}, z_i) - \frac{1}{m}\ell(\hat{w}^{(i)}, z')\right) - \left(\frac{1}{m}\ell(\hat{w}, z_i) - \frac{1}{m}\ell(\hat{w}, z')\right)$$

= $\left(\frac{1}{m}\ell(\hat{w}^{(i)}, z_i) - \frac{1}{m}\ell(\hat{w}, z_i)\right) - \left(\frac{1}{m}\ell(\hat{w}^{(i)}, z') - \frac{1}{m}\ell(\hat{w}, z')\right)$
= $\frac{2\rho}{m}\|\hat{w} - \hat{w}^{(i)}\|_2$

16

Proof cont'd. Therefore,

$$\frac{2\rho}{m} \|\hat{w} - \hat{w}^{(i)}\|_2 \ge \lambda \|\hat{w}^{(i)} - \hat{w}\|_2^2,$$

and consequently,

$$\|\hat{w}^{(i)}-\hat{w}\|_2 \leq \frac{2\rho}{m\lambda}.$$

Hence, for all *i*,

$$\ell(\hat{w}^{(i)}, z_i) - \ell(\hat{w}, z_i) \le \rho \|\hat{w}^{(i)} - \hat{w}\|_2 \le \frac{2\rho^2}{m\lambda}.$$

Taking expectation over $i \sim \text{Unif}([m])$ and $S, z' \sim D^{m+1}$, we conclude that \mathcal{A} is $g(m) = \frac{2\rho^2}{m\lambda}$ -OARO-stable.

Stability-fitting tradeoff

For

$$\hat{w} = \operatorname*{argmin}_{w} F_{\mathrm{S}}(w), \text{ where } F_{\mathrm{S}}(w) := \frac{\lambda}{2} \|w\|_{2}^{2} + L_{\mathrm{S}}(w),$$

ŵ has guarantee:

$$\underbrace{\mathbb{E}_{S\sim D^{m}} \left[L_{D}(\hat{w}) \right]}_{\text{expected generalization loss}} = \underbrace{\mathbb{E}_{S\sim D^{m}} \left[L_{S}(\hat{w}) \right]}_{\text{expected empirical loss}} + \underbrace{\mathbb{E}_{S\sim D^{m}} \left[L_{D}(\hat{w}) - L_{S}(\hat{w}) \right]}_{\text{expected generalization gap}},$$

$$\leq \mathbb{E}_{S\sim D^{m}} \left[L_{S}(\hat{w}) \right] + \frac{2\rho^{2}}{m\lambda}$$

$$\leq \mathbb{E}_{S\sim D^{m}} \left[F_{S}(\hat{w}) \right] + \frac{2\rho^{2}}{m\lambda}, \quad \forall w^{*}$$

$$\leq \mathbb{E}_{S\sim D^{m}} \left[F_{S}(w^{*}) \right] + \frac{2\rho^{2}}{m\lambda}, \quad \forall w^{*}$$

$$\leq \mathbb{E}_{S\sim D^{m}} \left[L_{S}(w^{*}) + \frac{\lambda}{2} \|w^{*}\|_{2}^{2} \right] + \frac{2\rho^{2}}{m\lambda}, \quad \forall w^{*}$$

$$\leq L_{D}(w^{*}) + \frac{\lambda}{2} \|w^{*}\|_{2}^{2} + \frac{2\rho^{2}}{m\lambda}, \quad \forall w^{*}$$

18

Tuning 1: competing with fixed bounded hypothesis class

• Suppose we would like \hat{w} to compete with hypothesis class $\mathcal{H} = \left\{ w \in \mathbb{R}^d : \|w\|_2 \le B \right\}$

• Recall:

$$\begin{split} \mathbb{E}_{S \sim D^m} \left[L_D(\hat{w}) \right] &\leq L_D(w) + \frac{\lambda}{2} \|w\|_2^2 + \frac{2\rho^2}{m\lambda}, \quad \forall w \in \mathcal{H}, \\ &\leq L_D(w) + \frac{\lambda B^2}{2} + \frac{2\rho^2}{m\lambda}, \quad \forall w \in \mathcal{H}, \end{split}$$

i.e.

$$\mathbb{E}_{S \sim D^m} \left[L_D(\hat{w}) \right] \leq \min_{w \in \mathcal{H}} L_D(w) + \left(\frac{\lambda B^2}{2} + \frac{2\rho^2}{m\lambda} \right)$$

Choosing $\lambda = \frac{2\rho}{B\sqrt{m}} \implies$

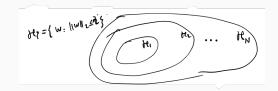
$$\mathbb{E}_{S\sim D^m}\left[L_D(\hat{w})\right] \leq \min_{w\in\mathcal{H}}L_D(w) + \rho B\sqrt{\frac{4}{m}}$$

Tuning 2: competing with unbounded hypothesis class

Choosing
$$\lambda = \Theta(\frac{1}{\sqrt{m}}) \implies$$

 $\mathbb{E}_{S \sim D^m} [L_D(\hat{w})] \leq L_D(w^*) + \frac{\lambda}{2} ||w^*||_2^2 + \frac{2\rho^2}{m\lambda}, \quad \forall w^* \in \mathbb{R}^d$
 $\leq L_D(w^*) + O\left(\frac{||w^*||_2^2 + \rho^2}{\sqrt{m}}\right), \quad \forall w^* \in \mathbb{R}^d$

This yields a model selection guarantee – competing with all hypothesis classes H_i simultaneously



- Stability provides another view of generalization, complementary to uniform convergence
- Through strong convexity, regularized convex loss minimization enjoys stability guarantees
- Tuning of regularization parameter results in stability-fitting tradeoff