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Motivation

So far, we have seen generalization error analyses by establishing
“uniform convergence” on hypothesis classes, assuming ĥ ∈ H,
where the key step is:

LD(ĥ)− LS(ĥ) ≤ sup
h∈H

(
LD(h)− LS(h)

)

Can we establish generalization error bounds on models output by
learning algorithms that do not use fixed hypothesis classes?
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Stability: abstract definition

• Algorithm A is stable, if small changes in input dataset does not
change the output model by much.

• A is stable =⇒ A is unlikely to capture the idiosyncrasies of
individual datasets, but rather property of the distribution

• E.g. regularized loss minimization:

ŵ← argmin
w

λ · R(w)︸ ︷︷ ︸
complexity regularizer

+
m∑
i=1

ℓ(w, zi)︸ ︷︷ ︸
empirical risk

λ ↑ =⇒ ŵ less affected by individual training examples =⇒
more stable
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Formal setting

• Training dataset S = (z1, . . . , zm)
iid∼ D

• Learning model parameterized by w ∈ Rd

• Loss function ℓ: ℓ(w, z) ∈ R (e.g. 0-1 loss, hinge loss, ...)
• Generalization loss of model w: LD(w) = Ez∼Dℓ(w, z)
• Training (empirical) loss of model w:
LS(w) = Ez∼Sℓ(w, z) = 1

|S|
∑

z∈S ℓ(w, z)
• learning algorithm A; output model ŵ = A(S)
• Goal: bound ŵ’s expected generalization loss:

ES∼Dm
[
LD(ŵ)

]
= ES∼Dm

[
LS(ŵ)

]︸ ︷︷ ︸
expected empirical loss

+ES∼Dm
[
LD(ŵ)− LS(ŵ)

]︸ ︷︷ ︸
expected generalization gap
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Stability: an intuitive formulation

• Compare ℓ(A(S), zi) vs. ℓ(A(S(i)), zi)
• If the former is much smaller, than A “overfits” on zi
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Stability: formal definition

Definition
Learning algorithm A is on-average-replace-one (OARO) stable with
rate function g : N→ R, if for any distribution D, any sample size m,

E(S,z′)∼Dm+1,i∼Unif([m])

[
ℓ(A(S(i)), zi)− ℓ(A(S), zi)

]
≤ g(m),

where [m] := {1, . . . ,m}.

Remarks:

• Usually denote by ŵ = A(S) and ŵ(i) = A(S(i))
• Intuitively, A more stable =⇒ can choose g to be smaller
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Stability implies generalization

Theorem
If A is OARO-stable with rate g, then

ES∼Dm
[
LD(A(S))− LS(A(S))

]
≤ g(m).

Proof.
It suffices to show

ES∼Dm
[
LD(A(S))− LS(A(S))

]
= E(S,z′)∼Dm+1,i∼Unif([m])

[
ℓ(A(S(i)), zi)− ℓ(A(S), zi)

]
We will look at the first and the second terms on the LHS / RHS
respectively.
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Stability implies generalization (cont’d)

Proof (cont’d).
For the second term:

ES∼Dm
[
LS(A(S))

] ?
= E(S,z′)∼Dm+1,i∼Unif([m])

[
ℓ(A(S), zi)

]
Observe:

E(S,z′)∼Dm+1,i∼Unif([m])

[
ℓ(A(S), zi)

]
= ES∼Dm+1

[
Ei∼Unif([m])

[
ℓ(A(S), zi)

]]
= ES∼Dm+1

 1
m

m∑
i=1

ℓ(A(S), zi)


= ES∼Dm+1

[
LS(A(S))

]
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Stability implies generalization (cont’d)

Proof (cont’d).
For the first term:

ES∼Dm
[
LD(A(S))

] ?
= E(S,z′)∼Dm+1,i∼Unif([m])

[
ℓ(A(S(i)), zi)

]
Observe: for every i, (S(i), zi)

d
= (S, z′) d

= Dm+1,

Therefore,

E(S,z′)∼Dm+1,i∼Unif([m])

[
ℓ(A(S(i)), zi)

]
= Ei∼Unif([m])

[
E(S,z′)∼Dm+1

[
ℓ(A(S(i)), zi)

]]
= Ei∼Unif([m])

[
E(S,z′)∼Dm+1

[
ℓ(A(S), z′)

]]
= Ei∼Unif([m])

[
ES∼Dm

[
LD(A(S))

]]
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ℓ2-Regularization gives stability

Assume:

• ℓ(w, z) is ρ-Lipschitz in w wrt ℓ2 norm,
• i.e. for any z, any w1,w2,∣∣ℓ(w1, z)− ℓ(w2, z)

∣∣ ≤ ρ∥w1 − w2∥2

• A sufficient condition: ℓ is differentiable in w and ∥∇ℓ(w, z)∥2 ≤ ρ

• ℓ(w, z) is convex in w
• e.g. ℓ is hinge / logistic / exponential loss
• does not capture 0-1 loss: ℓ(w, (x, y)) = I(y ⟨w, x⟩ ≤ 0)

• A takes input S, outputs

ŵ = argmin
w

(
λ

2 ∥w∥
2
2 + LS(w)

)

We will show that, A is g(m) := 2ρ2
λm-OARO-stable.
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Key tool: strong convexity

Definition
Function f in convex domain C ⊂ Rd is said to be λ-strongly convex
(SC) with respect to norm ∥ · ∥, if ∀w,u ∈ C, α ∈ (0, 1):

f(αw+ (1− α)u) ≤ αf(w) + (1− α)f(u)− λ

2α(1− α)∥w− u∥2
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Strong convexity: Useful properties

• f is 0-SC ⇐⇒ f is convex
• For f(x) = ⟨a, x⟩+ b, is f λ-SC with λ > 0?
• f(w) = λ

2 ∥w∥
2
2 is λ-SC wrt ∥ · ∥2

• If f is λ-SC wrt ∥ · ∥, g is convex, then h = f+ g is λ-SC wrt ∥ · ∥
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Strong convexity: behavior around minimizer

Lemma
If f is λ-SC wrt ∥ · ∥ and u = argminw∈C f(w), then for all w,

f(w)− f(u) ≥ λ

2 ∥w− u∥
2
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Strong convexity: behavior around minimizer

Proof.
We only show the special case when f is differentiable and C = Rd

(the general proof needs to use subgradient, introduced later in the
course)

1. u is the minimizer =⇒ ∇f(u) = 0
2. f is λ-SC =⇒ ∀w, α,

f(u+ α(w− u))− f(u)
α

≤ f(w)− f(u)− λ

2 (1− α)∥w− u∥2

3. Letting α→ 0:
• RHS → f(w)− f(u)− λ

2 ∥w− u∥2

• LHS = g(α)−g(0)
α−0 , where g(α) = f(u+ α(w− u)).

LHS → g′(α)
∣∣
α=0 =

〈
∇f(u+ α(w− u)),w− u

〉∣∣
α=0 =〈

∇f(u),w− u
〉
= 0
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ℓ2-Regularization gives stability (cont’d)

Theorem
If ℓ(w, z) is convex, and ρ-Lipschitz in w wrt ℓ2 norm, then algorithm A
that outputs

ŵ = argmin
w

(
λ

2 ∥w∥
2
2 + LS(w)

)
is 2ρ2

λm -OARO-stable.

Intuition:

ŵ = argmin
w

FS(w), where FS(w) :=
λ

2 ∥w∥
2
2 + LS(w)

ŵ(i) = argmin
w

FS(i)(w), where FSi(w) :=
λ

2 ∥w∥
2
2 + LS(i)(w)

Why would ŵ and ŵ(i) be close?
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The importance of strong convexity

FS, FSi λ-SC =⇒ can rule out pathological cases where ŵ− ŵ(i) is
large
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ℓ2-Regularization gives stability (cont’d)

Proof.
Local property of strong convexity =⇒

FS(ŵ(i))− FS(ŵ) ≥
λ

2 ∥ŵ
(i) − ŵ∥22

FS(i)(ŵ)− FS(i)(ŵ(i)) ≥ λ

2 ∥ŵ
(i) − ŵ∥22

Summing up the two inequalities and regrouping,(
FS(ŵ(i))− FS(i)(ŵ(i))

)
−
(
FS(ŵ)− FS(i)(ŵ)

)
≥ λ∥ŵ(i) − ŵ∥22

Note

LHS =

(
1
mℓ(ŵ(i), zi)−

1
mℓ(ŵ(i), z′)

)
−
(
1
mℓ(ŵ, zi)−

1
mℓ(ŵ, z′)

)
=

(
1
mℓ(ŵ(i), zi)−

1
mℓ(ŵ, zi)

)
−
(
1
mℓ(ŵ(i), z′)− 1

mℓ(ŵ, z′)
)

=
2ρ
m ∥ŵ− ŵ

(i)∥2 16



ℓ2-Regularization gives stability (cont’d)

Proof cont’d.
Therefore,

2ρ
m ∥ŵ− ŵ

(i)∥2 ≥ λ∥ŵ(i) − ŵ∥22,

and consequently,
∥ŵ(i) − ŵ∥2 ≤

2ρ
mλ

.

Hence, for all i,

ℓ(ŵ(i), zi)− ℓ(ŵ, zi) ≤ ρ∥ŵ(i) − ŵ∥2 ≤
2ρ2
mλ

.

Taking expectation over i ∼ Unif([m]) and S, z′ ∼ Dm+1, we conclude
that A is g(m) = 2ρ2

mλ -OARO-stable.
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Stability-fitting tradeoff

For
ŵ = argmin

w
FS(w), where FS(w) :=

λ

2 ∥w∥
2
2 + LS(w),

ŵ has guarantee:

ES∼Dm
[
LD(ŵ)

]︸ ︷︷ ︸
expected generalization loss

= ES∼Dm
[
LS(ŵ)

]︸ ︷︷ ︸
expected empirical loss

+ES∼Dm
[
LD(ŵ)− LS(ŵ)

]︸ ︷︷ ︸
expected generalization gap

,

≤ ES∼Dm
[
LS(ŵ)

]
+
2ρ2
mλ

≤ ES∼Dm
[
FS(ŵ)

]
+
2ρ2
mλ

≤ ES∼Dm
[
FS(w∗)

]
+
2ρ2
mλ

, ∀w∗

≤ ES∼Dm
[
LS(w∗) +

λ

2 ∥w
∗∥22
]
+
2ρ2
mλ

, ∀w∗

≤ LD(w∗) +
λ

2 ∥w
∗∥22 +

2ρ2
mλ

, ∀w∗

≤ LD(w∗) +
λ

2 ∥w
∗∥22︸ ︷︷ ︸

increasing in λ

+
2ρ2
mλ︸︷︷︸

decreasing in λ

, ∀w∗

How does this help guiding the choice of λ in practice?
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Tuning 1: competing with fixed bounded hypothesis class

• Suppose we would like ŵ to compete with hypothesis class
H =

{
w ∈ Rd : ∥w∥2 ≤ B

}
• Recall:

ES∼Dm
[
LD(ŵ)

]
≤ LD(w) +

λ

2 ∥w∥
2
2 +

2ρ2
mλ

, ∀w ∈ H,

≤ LD(w) +
λB2
2 +

2ρ2
mλ

, ∀w ∈ H,

i.e.

ES∼Dm
[
LD(ŵ)

]
≤ min

w∈H
LD(w) +

(
λB2
2 +

2ρ2
mλ

)
Choosing λ = 2ρ

B
√
m =⇒

ES∼Dm
[
LD(ŵ)

]
≤ min

w∈H
LD(w) + ρB

√
4
m .
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Tuning 2: competing with unbounded hypothesis class

Choosing λ = Θ( 1√
m ) =⇒

ES∼Dm
[
LD(ŵ)

]
≤ LD(w∗) +

λ

2 ∥w
∗∥22 +

2ρ2
mλ

, ∀w∗ ∈ Rd

≤ LD(w∗) + O
(
∥w∗∥22 + ρ2√

m

)
, ∀w∗ ∈ Rd

This yields a model selection guarantee – competing with all
hypothesis classes Hi simultaneously
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What have we learned?

• Stability provides another view of generalization,
complementary to uniform convergence

• Through strong convexity, regularized convex loss minimization
enjoys stability guarantees

• Tuning of regularization parameter results in stability-fitting
tradeoff

21


