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1 Sauer’s lemma

Lemma 1. H is hypothesis class. Let S = {x1, ..., xn} be a set of unlabeled examples then

|ΠH(S)| ≤ | {T ⊆ S : H shatters T} |, (1)

where | · | is the number of the elements of a finite set

Proof. The proof is given by mathematical induction.

Base case. Let n = 1 and S = {x1}. If H agrees on x1, without loss of generality all classifiers in H will
produce positive classification results on x1. Then ΠH(S) = {(+)} and only T = ∅ ⊆ S is shattered by H.
Both sides of (1) are equal to 1. If H disagrees on x1, ΠH(S) = {(+), (−)}. Two subsets of S, {x1} and ∅,
are shattered by H. Both sides of (1) are equal to 2. We have completed the proof for the base case.

Inductive case. Assume that ∀S′ of size n−1, |ΠH(S′)| ≤ | {T ⊆ S′ : H shatters T} |. We construct a set
of hypothesis class HS by selecting a representative from H for every labeling (l1, ..., ln) in ΠH(S). Therefore
by construction |HS | = |ΠH(S)|. Hypothesis class HS can be decomposed to H1 and H2 by the following
procedure:

• For every labeling in S′, (l1, ..., ln−1) if both (l1, ..., ln−1,+) and (l1, ..., ln−1,−) are achievable by HS ,
i.e. ∃h1, h2 ∈ HS s.t. (h1(x1), ..., h1(xn)) = (l1, ..., ln−1,+) and (h2(x1), ..., h2(xn)) = (l1, ..., ln−1,−),
then we send one to H1 and the other to H2.

• On the other hand, if only one of (l1, ..., ln−1,+) and (l1, ..., ln−1,−) is achievable, we send it to H1.

Observations:

|H1| ≥ |H2|, (2)

|H1| = |ΠH1
(S′)| and |H2| = |ΠH2

(S′)|, (3)

|HS | = |H1|+ |H2|. (4)

(2) is true because every time we send an element to H2 we send another element to H1. (3) comes from
the fact that classifiers in H1 and H2 generates unique labeling in S. So does S′. (4) is because any classifier
in HS gets sent to one of H1 and H2 by construction.

Then we consider a subset T of S. We make the following two further observations:

1. If H1 shatters T , then HS shatters T . This is because H1 ⊆ HS .

2. If H2 shatters T then HS shatters T ∪{xn}. The reason is that, if h2 ∈ H2 that achieves some labeling
(b1, . . . , bk) on T , then by the decomposition rule, there must exists its twin h1 ∈ H1 so that h1 and
h2 produce label (b1, ..., bk,+) and (b1, ..., bk,−) on T ∪ {xn}, i.e. conditioned on achieving labeling
(b1, . . . , bk) on T , both + and − are achievable for xn by classifiers in HS . Since H2 shatters T , then
HS shatters T ∪ {xn}.
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For S of size n, applying inductive hypothesis on (H1, S
′) and (H2, S

′), we have

|HS | = |H1|+ |H2|,
= |ΠH1

(S′)|+ |ΠH2
(S′)|,

≤ | {T ⊆ S′ : H1 shatters T} |+ | {T ⊆ S′ : H2 shatters T} |. (5)

Observe that

{T ⊆ S′ : H1 shatters T} = {T ⊆ S : xn ̸∈ T, H1 shatters T} ⊆ {T ⊆ S : xn ̸∈ T, H shatters T} , (6)

{T ⊆ S′ : H2 shatters T} = {T ⊆ S : xn /∈ T, H2 shatters T} ⊆ {T ⊆ S : xn /∈ T, H shatters T ∪ {xn}} ,
(7)

where the subset in (6) and (7) come from the “further observations” 1 and 2. Furthermore, note that the
right hand side of (7) has size

|{T ⊆ S : xn /∈ T, H shatters T ∪ {xn}}| = |{T ⊆ S : xn ∈ T, H shatters T}| ,

where the equality is from the observation that there exists a one-to-one correspondence between the elements
in the two families of sets: for any set T on the set family on the LHS, T ∪ {xn} belongs to the set family
on the RHS; for any set T on the set family on the RHS, T \ {xn} belongs to the set family on the LHS.

Putting (6) and (7) into (5) we obtain that |ΠH(S)| = |HS | ≤ | {T ⊆ S : xn ̸∈ T, H shatters T} | +
| {T ⊆ S : xn ∈ T, H shatters T} | = | {T ⊆ S : H shatters T} |. We have shown that the lemma is true for
S of size n which complete the proof by induction.

2 Application of Sauer’s lemma

First we recall the following corollary of Sauer’s Lemma from last time.

Corollary 2. If VC(H) = d and n ≥ 2, then S(H, n) ≤ nd+1.

Proof. By definition of the growth function S(H, n) = maxS:|S|=n |ΠH(S)|.
From Sauer’s lemma, |ΠH(S)| ≤ | {T ⊆ S : H shatters T} | for any S. Since the VC dimension of H is d, if
H shatters T then |T | ≤ d. So we have {T ⊆ S : H shatters T} ⊆ {T ⊆ S : |T | ≤ d}. The size of set of the

right hand size is
∑d

i=0

(
n
i

)
which is bounded by nd+1 numerically whenever n ≥ 2. Therefore,

S(H, n) ≤ nd+1. (8)

Example: bounding the VC dimension of composite hypothesis classes using Sauer’s Lemma.
Suppose we have a base hypothesis class B, let define Bf,k = {f (h1(x), ..., hk(x)) : h1, ..., hk ∈ B} for
f : {0, 1}k −→ {0, 1} being a fixed Boolean function. Here are some examples of f :

1. f(y1, ..., yk) = y1 ⊕ ...⊕ yk, (9)

2. f(y1, ..., yk) = y1 ∨ ... ∨ yk, (10)

3. f(y1, ..., yk) = majority of (y1...yk). (11)

Can we upper bound the complexity (VC dimension / growth function) of Bf,k? The answer is yes. Here is
a claim.

Claim 3.
S(Bf,k, n) ≤ n2kd. (12)
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Proof. Fix S = (x1, ..., xn).
For each h ∈ B, the number configurations of (h(x1), ..., h(xn)) is bounded by the growth function by

definition, which is further up bounded by nd+1 from corollary. Therefore the total number of configurations
of the matrix

Mh1,...,hk
=

h1(x1) h1(x2) . . . h1(xn)
. . .

hk(x1) hk(x2) . . . hk(xn)


is bounded by nk(d+1) ≤ n2kd. As determining Mh1,...,hk

fully determines

(f (h1(x1), ..., hk(x1)) , . . . , f (h1(xn), ..., hk(xn))) ,

by evaluating function f on all n columns, the number of possible labelings Bf,k achieves on S is at most
the number of possible Mh1,...,hk

’s, then we get (12).

Theorem 4. Let v = VC(Bf,k) be the VC dimension of Bf,k, then v ≤ 8kd ln (8kd) = Õ(kd).

Proof. From the definition of VC dimension, S(Bf,k, v) = 2v.
From the claim 3 we also have S(Bf,k, v) ≤ v2kd. Then

2v ≤ v2kd ⇒ v ≤ 2kd log2 v,

≤ 4kd ln v. (13)

By the following lemma, (13) leads to v ≤ 8kd ln (8kd) by letting a = 4kd and b = 0.

Lemma 5. If a > 0, b ≥ 0, x > 0 and x ≤ a lnx+ b then x ≤ 2a ln (2a) + 2b.

Proof. Since ∀t > 0, ln t ≤ t.
Substituting t = x

2a , we have

lnx ≤ ln (2a) +
x

2a
.

Then from our assumption

x ≤ a lnx+ b,

≤ a
(
ln (2a) +

x

2a

)
+ b,

≤ a ln (2a) +
x

2
+ b. (14)

Therefore x ≤ 2a ln (2a) + 2b from (14).

3 Uniform convergence

If H has a finite VC dimension then as the number of training examples m increases, the empirical error
converges to its generalization error and the difference is bounded in terms of H’s VC dimension.

Theorem 6. Suppose hypothesis class H has VC dimension d. Then given set of m i.i.d. training samples
(x1, y1), ..., (xn, yn) from distribution D. With probability at least 1− δ,

sup
h∈H

|err(h, S)− err(h,D)| ≤ c1

√
lnS(H, n) + ln 1

δ

n
≤ c2

√
d ln n

d + ln 1
δ

n
(15)

for some absolute constants c1, c2 > 0.
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