CSC 588: Machine learning theory

Spring 2022

Lecture 9: Sauer's Lemma and Its Applications

Lecturer: Chicheng Zhang

Scribe: Jing Wu

1 Sauer's lemma

Lemma 1. \mathcal{H} is hypothesis class. Let $S = \{x_1, ..., x_n\}$ be a set of unlabeled examples then

$$|\Pi_{\mathcal{H}}(S)| \le |\{T \subseteq S : \mathcal{H} \text{ shatters } T\}|,\tag{1}$$

where $|\cdot|$ is the number of the elements of a finite set

Proof. The proof is given by mathematical induction.

Base case. Let n = 1 and $S = \{x_1\}$. If \mathcal{H} agrees on x_1 , without loss of generality all classifiers in \mathcal{H} will produce positive classification results on x_1 . Then $\Pi_{\mathcal{H}}(S) = \{(+)\}$ and only $T = \emptyset \subseteq S$ is shattered by \mathcal{H} . Both sides of (1) are equal to 1. If \mathcal{H} disagrees on x_1 , $\Pi_{\mathcal{H}}(S) = \{(+), (-)\}$. Two subsets of S, $\{x_1\}$ and \emptyset , are shattered by \mathcal{H} . Both sides of (1) are equal to 2. We have completed the proof for the base case.

Inductive case. Assume that $\forall S'$ of size n-1, $|\Pi_{\mathcal{H}}(S')| \leq |\{T \subseteq S' : \mathcal{H} \text{ shatters } T\}|$. We construct a set of hypothesis class \mathcal{H}_S by selecting a representative from \mathcal{H} for every labeling $(l_1, ..., l_n)$ in $\Pi_{\mathcal{H}}(S)$. Therefore by construction $|\mathcal{H}_S| = |\Pi_{\mathcal{H}}(S)|$. Hypothesis class \mathcal{H}_S can be decomposed to \mathcal{H}_1 and \mathcal{H}_2 by the following procedure:

- For every labeling in S', $(l_1, ..., l_{n-1})$ if both $(l_1, ..., l_{n-1}, +)$ and $(l_1, ..., l_{n-1}, -)$ are achievable by \mathcal{H}_S , i.e. $\exists h_1, h_2 \in \mathcal{H}_S$ s.t. $(h_1(x_1), ..., h_1(x_n)) = (l_1, ..., l_{n-1}, +)$ and $(h_2(x_1), ..., h_2(x_n)) = (l_1, ..., l_{n-1}, -)$, then we send one to \mathcal{H}_1 and the other to \mathcal{H}_2 .
- On the other hand, if only one of $(l_1, ..., l_{n-1}, +)$ and $(l_1, ..., l_{n-1}, -)$ is achievable, we send it to \mathcal{H}_1 .

Observations:

$$\mathcal{H}_1| \ge |\mathcal{H}_2|,\tag{2}$$

$$|\mathcal{H}_1| = |\Pi_{\mathcal{H}_1}(S')|$$
 and $|\mathcal{H}_2| = |\Pi_{\mathcal{H}_2}(S')|,$ (3)

$$|\mathcal{H}_S| = |\mathcal{H}_1| + |\mathcal{H}_2|. \tag{4}$$

(2) is true because every time we send an element to \mathcal{H}_2 we send another element to \mathcal{H}_1 . (3) comes from the fact that classifiers in \mathcal{H}_1 and \mathcal{H}_2 generates unique labeling in S. So does S'. (4) is because any classifier in \mathcal{H}_S gets sent to one of \mathcal{H}_1 and \mathcal{H}_2 by construction.

Then we consider a subset T of S. We make the following two further observations:

- 1. If \mathcal{H}_1 shatters T, then \mathcal{H}_S shatters T. This is because $\mathcal{H}_1 \subseteq \mathcal{H}_S$.
- 2. If \mathcal{H}_2 shatters T then \mathcal{H}_S shatters $T \cup \{x_n\}$. The reason is that, if $h_2 \in \mathcal{H}_2$ that achieves some labeling (b_1, \ldots, b_k) on T, then by the decomposition rule, there must exists its twin $h_1 \in \mathcal{H}_1$ so that h_1 and h_2 produce label $(b_1, \ldots, b_k, +)$ and $(b_1, \ldots, b_k, -)$ on $T \cup \{x_n\}$, i.e. conditioned on achieving labeling (b_1, \ldots, b_k) on T, both + and are achievable for x_n by classifiers in \mathcal{H}_S . Since \mathcal{H}_2 shatters T, then \mathcal{H}_S shatters $T \cup \{x_n\}$.

For S of size n, applying inductive hypothesis on (\mathcal{H}_1, S') and (\mathcal{H}_2, S') , we have

$$\begin{aligned} |\mathcal{H}_S| &= |\mathcal{H}_1| + |\mathcal{H}_2|, \\ &= |\Pi_{\mathcal{H}_1}(S')| + |\Pi_{\mathcal{H}_2}(S')|, \\ &\leq |\{T \subseteq S' : \mathcal{H}_1 \text{ shatters } T\}| + |\{T \subseteq S' : \mathcal{H}_2 \text{ shatters } T\}|. \end{aligned}$$
(5)

Observe that

$$\{T \subseteq S' : \mathcal{H}_1 \text{ shatters } T\} = \{T \subseteq S : x_n \notin T, \ \mathcal{H}_1 \text{ shatters } T\} \subseteq \{T \subseteq S : x_n \notin T, \ \mathcal{H} \text{ shatters } T\},$$
(6)
$$\{T \subseteq S' : \mathcal{H}_2 \text{ shatters } T\} = \{T \subseteq S : x_n \notin T, \ \mathcal{H}_2 \text{ shatters } T\} \subseteq \{T \subseteq S : x_n \notin T, \ \mathcal{H} \text{ shatters } T \cup \{x_n\}\},$$
(7)

where the subset in (6) and (7) come from the "further observations" 1 and 2. Furthermore, note that the right hand side of (7) has size

$$|\{T \subseteq S : x_n \notin T, \ \mathcal{H} \text{ shatters } T \cup \{x_n\}\}| = |\{T \subseteq S : x_n \in T, \ \mathcal{H} \text{ shatters } T\}|,$$

where the equality is from the observation that there exists a one-to-one correspondence between the elements in the two families of sets: for any set T on the set family on the LHS, $T \cup \{x_n\}$ belongs to the set family on the RHS; for any set T on the set family on the RHS, $T \setminus \{x_n\}$ belongs to the set family on the LHS.

Putting (6) and (7) into (5) we obtain that $|\Pi_{\mathcal{H}}(S)| = |\mathcal{H}_S| \leq |\{T \subseteq S : x_n \notin T, \mathcal{H} \text{ shatters } T\}| + |\{T \subseteq S : x_n \in T, \mathcal{H} \text{ shatters } T\}| = |\{T \subseteq S : \mathcal{H} \text{ shatters } T\}|$. We have shown that the lemma is true for S of size n which complete the proof by induction.

2 Application of Sauer's lemma

First we recall the following corollary of Sauer's Lemma from last time.

Corollary 2. If $VC(\mathcal{H}) = d$ and $n \ge 2$, then $\mathcal{S}(\mathcal{H}, n) \le n^{d+1}$.

Proof. By definition of the growth function $\mathcal{S}(\mathcal{H}, n) = \max_{S:|S|=n} |\Pi_{\mathcal{H}}(S)|$. From Sauer's lemma, $|\Pi_{\mathcal{H}}(S)| \leq |\{T \subseteq S : \mathcal{H} \text{ shatters } T\}|$ for any S. Since the VC dimension of \mathcal{H} is d, if \mathcal{H} shatters T then $|T| \leq d$. So we have $\{T \subseteq S : \mathcal{H} \text{ shatters } T\} \subseteq \{T \subseteq S : |T| \leq d\}$. The size of set of the right hand size is $\sum_{i=0}^{d} {n \choose i}$ which is bounded by n^{d+1} numerically whenever $n \geq 2$. Therefore,

$$\mathcal{S}(\mathcal{H}, n) \le n^{d+1}.\tag{8}$$

Example: bounding the VC dimension of composite hypothesis classes using Sauer's Lemma. Suppose we have a base hypothesis class \mathcal{B} , let define $\mathcal{B}_{f,k} = \{f(h_1(x), ..., h_k(x)) : h_1, ..., h_k \in \mathcal{B}\}$ for $f: \{0, 1\}^k \longrightarrow \{0, 1\}$ being a fixed Boolean function. Here are some examples of f:

1.
$$f(y_1, \dots, y_k) = y_1 \oplus \dots \oplus y_k, \tag{9}$$

2.
$$f(y_1, ..., y_k) = y_1 \lor ... \lor y_k,$$
 (10)

3.
$$f(y_1, ..., y_k) =$$
majority of $(y_1...y_k)$. (11)

Can we upper bound the complexity (VC dimension / growth function) of $\mathcal{B}_{f,k}$? The answer is yes. Here is a claim.

Claim 3.

$$\mathcal{S}(\mathcal{B}_{f,k},n) \le n^{2kd}.\tag{12}$$

Proof. Fix $S = (x_1, ..., x_n)$.

For each $h \in \mathcal{B}$, the number configurations of $(h(x_1), ..., h(x_n))$ is bounded by the growth function by definition, which is further up bounded by n^{d+1} from corollary. Therefore the total number of configurations of the matrix

$$M_{h_1,\dots,h_k} = \begin{bmatrix} h_1(x_1) & h_1(x_2) & \dots & h_1(x_n) \\ & \ddots & & \\ h_k(x_1) & h_k(x_2) & \dots & h_k(x_n) \end{bmatrix}$$

is bounded by $n^{k(d+1)} \leq n^{2kd}$. As determining M_{h_1,\ldots,h_k} fully determines

$$(f(h_1(x_1),...,h_k(x_1)),...,f(h_1(x_n),...,h_k(x_n))),$$

by evaluating function f on all n columns, the number of possible labelings $\mathcal{B}_{f,k}$ achieves on S is at most the number of possible M_{h_1,\ldots,h_k} 's, then we get (12).

Theorem 4. Let $v = VC(\mathcal{B}_{f,k})$ be the VC dimension of $\mathcal{B}_{f,k}$, then $v \leq 8kd \ln(8kd) = \tilde{\mathcal{O}}(kd)$.

Proof. From the definition of VC dimension, $S(\mathcal{B}_{f,k}, v) = 2^{v}$. From the claim 3 we also have $S(\mathcal{B}_{f,k}, v) \leq v^{2kd}$. Then

$$2^{v} \le v^{2kd} \Rightarrow v \le 2kd \log_2 v, \le 4kd \ln v.$$
(13)

By the following lemma, (13) leads to $v \leq 8kd \ln (8kd)$ by letting a = 4kd and b = 0.

Lemma 5. If $a > 0, b \ge 0, x > 0$ and $x \le a \ln x + b$ then $x \le 2a \ln (2a) + 2b$.

Proof. Since $\forall t > 0$, $\ln t \leq t$. Substituting $t = \frac{x}{2a}$, we have

$$\ln x \le \ln \left(2a \right) + \frac{x}{2a}$$

Then from our assumption

$$x \le a \ln x + b,$$

$$\le a \left(\ln (2a) + \frac{x}{2a} \right) + b,$$

$$\le a \ln (2a) + \frac{x}{2} + b.$$
(14)

Therefore $x \leq 2a \ln (2a) + 2b$ from (14).

3 Uniform convergence

If \mathcal{H} has a finite VC dimension then as the number of training examples *m* increases, the empirical error converges to its generalization error and the difference is bounded in terms of \mathcal{H} 's VC dimension.

Theorem 6. Suppose hypothesis class \mathcal{H} has VC dimension d. Then given set of m i.i.d. training samples $(x_1, y_1), ..., (x_n, y_n)$ from distribution D. With probability at least $1 - \delta$,

$$\sup_{h \in \mathcal{H}} |err(h, S) - err(h, D)| \le c_1 \sqrt{\frac{\ln \mathcal{S}(\mathcal{H}, n) + \ln \frac{1}{\delta}}{n}} \le c_2 \sqrt{\frac{d \ln \frac{n}{d} + \ln \frac{1}{\delta}}{n}}$$
(15)

for some absolute constants $c_1, c_2 > 0$.