CSC 588: Machine learning theory

#### Spring 2022

Lecture 6: ERM Analysis; PAC Learning Infinite Hypothesis Classes Lecturer: Chicheng Zhang Scribe: Ryan Murphy

## 1 Analysis of ERM

**Theorem:** Empirical Risk Minimization (ERM) with hypothesis class  $\mathcal{H}$  with m training examples drawn i.i.d. from  $\mathcal{D}$  such that  $m \ge f(\varepsilon, \delta) = \frac{2}{\varepsilon^2} \left( \ln |\mathcal{H}| + \ln \frac{2}{\delta} \right)$  outputs  $\hat{h} \in \mathcal{H}$  such that with probability  $1 - \delta$ 

$$\operatorname{err}\left(\hat{h}, \mathcal{D}\right) \leq \min_{h \in \mathcal{H}} \operatorname{err}\left(h, \mathcal{D}\right) + \varepsilon.$$
 (1)

**Proof:** We construct a favorable event E such that  $E = \bigcap_{h \in \mathcal{H}} \{ |\operatorname{err}(h, \mathcal{S}) - \operatorname{err}(h, \mathcal{D})| \leq \frac{\varepsilon}{2} \}$ . Event E represents the case where the true error of every hypothesis in  $\mathcal{H}$  differs from the empirical error by at most  $\frac{\varepsilon}{2}$ . In the case of event E, by the "key observation" from Lecture 4 with  $\mu = \frac{\varepsilon}{2}$ ,

$$\operatorname{err}(\hat{h}, \mathcal{D}) \leq \min_{h \in \mathcal{H}} \operatorname{err}(h, \mathcal{D}) + \varepsilon.$$
 (2)

To show  $\mathbb{P}(E) \geq 1 - \delta$ , it suffices to show  $\mathbb{P}(\overline{E}) \leq \delta$ . We construct another event  $B_h$  such that

$$B_{h} = \left\{ |\operatorname{err}(h, \mathcal{S}) - \operatorname{err}(h, \mathcal{D})| > \frac{\varepsilon}{2} \right\}$$
(3)

$$\overline{E} = \bigcup_{h \in \mathcal{H}} B_h \tag{4}$$

Where  $\forall h \in \mathcal{H}$  empirical error deviates from generalization error by at most  $\frac{\varepsilon}{2}$ . What can we say about chance of  $B_h$ ? If we can bound  $B_h$  we can use union bound.

$$D(B_h) \le 2 \exp\left(-2 \cdot \frac{m \cdot \left(\frac{\varepsilon}{2}\right)^2}{(1-0)^2}\right) = 2 \exp\left(-\frac{m\varepsilon^2}{2}\right) \le \frac{\delta}{|\mathcal{H}|}$$
(5)

View training error as an average of i.i.d. Bernoulli random variables. The union bound implies

$$\mathbb{P}(\overline{E}) \le \sum_{h \in \mathcal{H}} \mathbb{P}(B_h) \le |\mathcal{H}| \cdot \frac{\delta}{|\mathcal{H}|} = \delta. \quad \Box$$
(6)

So we see the union bound trick does not "blow up" sample complexity by too much – the sample complexity's dependence on  $|\mathcal{H}|$  is only logarithmic.

**Exercise:** If we use Chebyshev's inequality to bound  $B_h$  what sample complexity guarantees can we show for ERM? (Hint: It will still give a valid upper bound but the bound will be worse.)

If we instead fix the sample budget what guarantee can we make about  $\varepsilon$ ?

**Corollary:** Set  $\varepsilon$  such that  $\frac{2}{\varepsilon^2} \ln \frac{2|\mathcal{H}|}{\delta} = m$ 

$$\varepsilon = \sqrt{\frac{2\ln|\mathcal{H}| + 2\ln\frac{2}{\delta}}{m}} \tag{7}$$

Therefore, ERM with  $\mathcal{H}$  with a fixed budget of m i.i.d. training examples from  $\mathcal{D}$ , outputs classifier  $\hat{h} \in \mathcal{H}$  such that with probability  $1 - \delta$ ,

$$\operatorname{err}(\hat{h}, \mathcal{D}) \leq \min_{h \in \mathcal{H}} \operatorname{err}(h, \mathcal{D}) + \sqrt{\frac{2\ln|\mathcal{H}| + 2\ln\frac{2}{\delta}}{m}}.$$
(8)

We see the error bound is monotonically decreasing with sample size, and also depends on the log of the size of the hypothesis class; this is called the "Occam's Razor" bound (Occam's Razor  $\implies$  a short explanation tends to be more valid than a long explanation.)

Question: In the context of Occam's Razor, what does  $\mathcal{H}$  actually mean? What if we double the possible  $\mathcal{H}?$ 

We can think of D as some natural phenomenon, and we would like to pick a good explanation h for it (i.e.,  $\operatorname{err}(h, D)$  is small).  $\mathcal{H}$  is a set of candidate explanations. The cardinality of hypothesis class  $|\mathcal{H}|$  is complexity of explanation; the error  $\operatorname{err}(\hat{h}, \mathcal{D})$  is power or validity of explanation  $\hat{h}$ .

#### Caveats of using Hoeffding's Inequality: an example

Consider data drawn from a uniform distribution D such that  $\mathcal{X} \sim \text{uniform}([0,1])$ . There is a threshold at  $\frac{1}{2}$  and all samples less than  $\frac{1}{2}$  are negative, and all greater than  $\frac{1}{2}$  are positive.

#### Algorithm: (Memorization)

Given training set  $\mathcal{S}$ , return a classifier that predicts perfectly on the training set. If sample is not in training set always return +1:

$$\hat{h}(x) = \begin{cases} y_i & x = x_i & \text{for some } i \\ +1 & \text{otherwise} \end{cases}$$
(9)

Questions:

1. What is  $\hat{h}$ 's training error rate? A direct calculation yields that,  $\operatorname{err}(\hat{h}, \mathcal{S}) = \frac{1}{m} \sum_{i=1}^{m} I(\hat{h}(x_i) \neq y_i) = 0$ 

2. Is it true that  $\forall \delta > 0$ 

$$\mathbb{P}\left(\left|\operatorname{err}(\hat{h},\mathcal{S}) - \operatorname{err}(\hat{h},\mathcal{D})\right| \le \sqrt{\frac{\ln\frac{2}{\delta}}{m}}\right) \ge 1 - \delta?$$
(10)

3. What is  $\hat{h}$ 's generalization error rate? A direct calculation yields that,  $\operatorname{err}(\hat{h}, \mathcal{D}) = \frac{1}{2}$  because  $\mathbb{P}\left(\hat{h}(x) = +1\right) = 1$ We now come back to answer question 2. To use Hoeffding's inequality to analyze

$$\operatorname{err}(\hat{h}, \mathcal{S}) = \frac{1}{m} \sum_{i=1}^{n} I\left(\hat{h}(x_i) \neq y_i\right),\tag{11}$$

it must be the case that  $I(\hat{h}(x_i) \neq y_i)$  are being drawn i.i.d. from Bernoulli( $\operatorname{err}(\hat{h}, \mathcal{D})$ ), but since the mean parameter of this Bernoulli distribution is  $\operatorname{err}(\hat{h}, \mathcal{D}) = \frac{1}{2} \neq 0$ , there is some contradiction. The problem is that, to apply Hoeffding's Inequality, we need  $\hat{h}$  to be chosen before seeing the sample set  $\mathcal{S}$ . In the case of the memorization example  $\hat{h}$  depends on S.

## 2 Infinite hypothesis classes: PAC learning variants

We have seen  $|\mathcal{H}| \leq \infty$  implies  $\mathcal{H}$  is (agnostic) PAC learnable. What if  $|\mathcal{H}| = \infty$ ?



Example: a PAC learnable hypothesis class with infinite cardinality.

Figure 1: Example of hypothesis class of 2d rectangles which we will show is PAC learnable despite having an infinite cardinality.

Consider the case where samples are from  $\mathbb{R}^2$ ,  $\mathcal{X} = \mathbb{R}^2$ , and have binary labeling such that  $y = \{0, 1\}$ . We consider classifiers which are defined by axis-aligned rectangular regions.

$$\mathcal{H} = \{\text{rectangles}\} = \{h_{a_1, b_1, a_2, b_2} : a_1 \le b_1 \& a_2 \le b_2\}$$
(12)

$$h_{a_1,b_1,a_2,b_2}(x) = \begin{cases} 1 & x_1 \in [a_1,b_1] \& x_2 \in [a_2,b_2] \\ 0 & \text{otherwise} \end{cases}$$
(13)

Also, consider  $\mathcal{D}$  realizable by  $\mathcal{H}$  so data can be separated by a rectangle correctly.

Finally we consider algorithm  $\mathcal{A}$ . Given training set  $\mathcal{S}$  return classifier  $\hat{h}$  as the smallest rectangle enclosing all positive examples in the training set. This is the "closure" algorithm which attempts to output a minimum covering rectangle.



Figure 2: Example of estimator  $\hat{h}$  based on a sample dataset S. Note that the optimal classifier  $h^*$  contains  $\hat{h}$  with an error region.

We can analyze this algorithm's performance in the PAC framework.

**Claim:** If  $\mathcal{A}$  receives a training set  $\mathcal{S}$  of size  $m \geq \frac{4}{\varepsilon} \ln \frac{4}{\delta}$  i.i.d. from  $\mathcal{D}$  then with probability  $1-\delta$ ,  $\operatorname{err}(\hat{h}, \mathcal{D}) \leq \varepsilon$ . (PAC is guaranteed)

#### **Proof:**

1. For  $h \in \mathcal{H}$ , define R(h) = (rectangle associated with h). As shown in figure  $2, R(\hat{h}) \subseteq R(h^*)$ . This implies that h cannot make false negatives, only false positives.

$$\forall x \text{ if } \hat{h}(x) = 1 \implies h^*(x) = 1 \tag{14}$$

$$h^* = h_{a_1^*, b_1^*, a_2^*, b_2^*} \tag{15}$$



Figure 3: Example of thresholds which bound the error of each edge of the rectangle.

2. We can define a threshold very close to  $a_1^*, a_1^{\varepsilon}$  such that

$$\mathbb{P}\left(x \in [a_1^*, a_1^{\varepsilon}] \times [a_2^*, b_2^*]\right) = \frac{\varepsilon}{4} \tag{16}$$

Similarly define  $b_1^{\varepsilon}$ ,  $a_2^{\varepsilon}$ , and  $b_2^{\varepsilon}$ ; also denote by  $R_1$ ,  $R_2$ ,  $R_3$ , and  $R_4$  the associated regions, e.g.  $R_1 = [a_1^*, a_1^{\varepsilon}] \times [a_2^*, b_2^*]$ , etc.

Observation: If S contains examples in all of  $R_1$ ,  $R_2$ ,  $R_3$ ,  $R_4$  then

$$\operatorname{err}(\hat{h}, \mathcal{D}) = \mathbb{P}\left(\{\hat{h}(x) = 0, h^*(x) = 1\}\right)$$
(17)

$$\leq \mathbb{P}\left(R_1 \cup R_2 \cup R_3 \cup R_4\right) \tag{18}$$

$$\leq \sum_{j=1}^{4} \mathbb{P}(R_j) = 4 \cdot \frac{\varepsilon}{4} = \varepsilon \tag{19}$$

3. Define an event E such that  $E = \{ \forall j = 1, ..., 4, S \text{ contains example in } R_j \}.$ 

Rest of proof is left as an exercise:

### Exercise:

Write E as an intersection

$$E = \bigcap_{j=1}^{4} \{ \mathcal{S} \text{ contains example in} R_j \}$$

Using DeMorgan's law and union bound, show  $\mathbb{P}(E) \geq 1 - \delta$ .

# 3 General Characterization of Infinite Hypothesis Classes

We will describe the VC dimension (VC coming from authors names Vapnik and Chervonenkis). This will give us a more general tool to characterize the complexity of a hypothesis class that goes beyond hypothesis class sizes (we have seen that size fails for characterizing the complexity of infinite hypothesis classes.)

#### **Definition:**

Given hypothesis class  $\mathcal{H} \subseteq (\mathcal{X} \to \{\pm 1\})$  and a sequence of unlabeled examples  $\mathcal{S} = (x_1, ..., x_n)$  we define the projection of  $\mathcal{H}$  on  $\mathcal{S}$  as

$$\Pi_{\mathcal{H}}(\mathcal{S}) = \{(h(x_1), ..., h(x_n)) : h \in \mathcal{H}\}$$
(20)

The size of this set will be the combination of possible labellings, which can be trivially bounded by:

$$|\Pi_{\mathcal{H}}(\mathcal{S})| \le 2^n. \tag{21}$$

### Example:

We consider the case where the data is a set of values from  $\mathbb{R}$ , each with a label in  $\pm 1$ . We consider the hypothesis class a threshold value which splits the real numbers.

$$\mathcal{H} = \{\text{thresholds}\} = \{h_t : t \in \mathbb{R}\}$$
(22)



Figure 4: Example of threshold hypothesis function and possible labellings for a dataset of size 2.

$$\Pi_{\mathcal{H}}(\mathcal{S}) = \{(-1, -1), (+1, +1), (-1, +1)\}$$
(23)

If  $|\Pi_{\mathcal{H}}(\mathcal{S})| = 2^n$  then  $\mathcal{H}$  "shatters"  $\mathcal{S}$ . The example above shows that  $\mathcal{H}$  does not shatter  $(x_1, x_2)$  but does shatter  $(x_1)$ .