
CSC 588: Machine learning theory Spring 2022

Lecture 6: ERM Analysis; PAC Learning Infinite Hypothesis Classes
Lecturer: Chicheng Zhang Scribe: Ryan Murphy

1 Analysis of ERM

Theorem: Empirical Risk Minimization (ERM) with hypothesis class H with m training examples drawn

i.i.d. from D such that m ≥ f(ε, δ) = 2
ε2

(
ln |H|+ ln 2

δ

)
outputs ĥ ∈ H such that with probability 1− δ

err
(
ĥ,D

)
≤ min

h∈H
err (h,D) + ε. (1)

Proof: We construct a favorable event E such that E =
⋂

h∈H
{
|err(h,S)− err(h,D)| ≤ ε

2

}
. Event E

represents the case where the true error of every hypothesis in H differs from the empirical error by at most
ε
2 . In the case of event E, by the “key observation” from Lecture 4 with µ = ϵ

2 ,

err(ĥ,D) ≤ min
h∈H

err(h,D) + ε. (2)

To show P(E) ≥ 1− δ, it suffices to show P(Ē) ≤ δ. We construct another event Bh such that

Bh =
{
|err(h,S)− err(h,D)| > ε

2

}
(3)

E =
⋃
h∈H

Bh (4)

Where ∀h ∈ H empirical error deviates from generalization error by at most ε
2 . What can we say about

chance of Bh? If we can bound Bh we can use union bound.

D(Bh) ≤ 2 exp

(
−2 ·

m · ( ε2 )
2

(1− 0)2

)
= 2 exp

(
−mε2

2

)
≤ δ

|H|
(5)

View training error as an average of i.i.d. Bernoulli random variables. The union bound implies

P(E) ≤
∑
h∈H

P(Bh) ≤ |H| · δ

|H|
= δ. □ (6)

So we see the union bound trick does not ”blow up” sample complexity by too much – the sample com-
plexity’s dependence on |H| is only logarithmic.

Exercise: If we use Chebyshev’s inequality to bound Bh what sample complexity guarantees can we show
for ERM? (Hint: It will still give a valid upper bound but the bound will be worse.)

If we instead fix the sample budget what guarantee can we make about ε?
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Corollary: Set ε such that 2
ε2 ln

2|H|
δ = m

ε =

√
2 ln |H|+ 2 ln 2

δ

m
(7)

Therefore, ERM with H with a fixed budget of m i.i.d. training examples from D, outputs classifier
ĥ ∈ H such that with probability 1− δ,

err(ĥ,D) ≤ min
h∈H

err(h,D) +

√
2 ln |H|+ 2 ln 2

δ

m
. (8)

We see the error bound is monotonically decreasing with sample size, and also depends on the log of
the size of the hypothesis class; this is called the ”Occam’s Razor” bound (Occam’s Razor =⇒ a short
explanation tends to be more valid than a long explanation.)

Question: In the context of Occam’s Razor, what does H actually mean? What if we double the possible
H?

We can think of D as some natural phenomenon, and we would like to pick a good explanation h for
it (i.e., err(h,D) is small). H is a set of candidate explanations. The cardinality of hypothesis class |H| is
complexity of explanation; the error err(ĥ,D) is power or validity of explanation ĥ.

Caveats of using Hoeffding’s Inequality: an example
Consider data drawn from a uniform distribution D such that X ∼ uniform([0, 1]). There is a threshold

at 1
2 and all samples less than 1

2 are negative, and all greater than 1
2 are positive.

Algorithm: (Memorization)
Given training set S, return a classifier that predicts perfectly on the training set. If sample is not in

training set always return +1:

ĥ(x) =

{
yi x = xi for some i

+1 otherwise
(9)

Questions:
1. What is ĥ’s training error rate? A direct calculation yields that, err(ĥ,S) = 1

m

∑m
i=1 I(ĥ(xi) ̸= yi) = 0

2. Is it true that ∀δ > 0

P

∣∣∣err(ĥ,S)− err(ĥ,D)
∣∣∣ ≤

√
ln 2

δ

m

 ≥ 1− δ? (10)

3. What is ĥ’s generalization error rate? A direct calculation yields that, err(ĥ,D) = 1
2 because

P
(
ĥ(x) = +1

)
= 1

We now come back to answer question 2. To use Hoeffding’s inequality to analyze

err(ĥ,S) = 1

m

n∑
i=1

I
(
ĥ(xi) ̸= yi

)
, (11)

it must be the case that I
(
ĥ(xi) ̸= yi

)
are being drawn i.i.d. from Bernoulli(err(ĥ,D)), but since the

mean parameter of this Bernoulli distribution is err(ĥ,D) = 1
2 ̸= 0, there is some contradiction. The problem

is that, to apply Hoeffding’s Inequality, we need ĥ to be chosen before seeing the sample set S. In the case
of the memorization example ĥ depends on S.
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2 Infinite hypothesis classes: PAC learning variants

We have seen |H| ≤ ∞ implies H is (agnostic) PAC learnable. What if |H| = ∞?

Example: a PAC learnable hypothesis class with infinite cardinality.

a2

x2

b2

b1a1
x1

h

= 1

= 0

Figure 1: Example of hypothesis class of 2d rectangles which we will show is PAC learnable despite having
an infinite cardinality.

Consider the case where samples are from R2, X = R2, and have binary labeling such that y = {0, 1}.
We consider classifiers which are defined by axis-aligned rectangular regions.

H = {rectangles} = {ha1,b1,a2,b2 : a1 ≤ b1 & a2 ≤ b2} (12)

ha1,b1,a2,b2(x) =

{
1 x1 ∈ [a1, b1] & x2 ∈ [a2, b2]

0 otherwise
(13)

Also, consider D realizable by H so data can be separated by a rectangle correctly.
Finally we consider algorithm A. Given training set S return classifier ĥ as the smallest rectangle

enclosing all positive examples in the training set. This is the ”closure” algorithm which attempts to output
a minimum covering rectangle.

3



a2

x2

b2

b1a1
x1

h∗
−

−

−
−

+

+

+

+ ĥ
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Figure 2: Example of estimator ĥ based on a sample dataset S. Note that the optimal classifier h∗ contains
ĥ with an error region.

We can analyze this algorithm’s performance in the PAC framework.

Claim: IfA receives a training set S of sizem ≥ 4
ε ln

4
δ i.i.d. from D then with probability 1−δ, err(ĥ,D) ≤ ε.

(PAC is guaranteed)

Proof:
1. For h ∈ H, define R(h) = (rectangle associated with h). As shown in figure 2, R(ĥ) ⊆ R(h∗). This

implies that h cannot make false negatives, only false positives.

∀x if ĥ(x) = 1 =⇒ h∗(x) = 1 (14)

h∗ = ha∗
1 ,b

∗
1 ,a

∗
2 ,b

∗
2

(15)
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Figure 3: Example of thresholds which bound the error of each edge of the rectangle.

2. We can define a threshold very close to a∗1, a
ε
1 such that

P (x ∈ [a∗1, a
ε
1]× [a∗2, b

∗
2]) =

ε

4
(16)

Similarly define bε1, a
ε
2, and bε2; also denote by R1, R2, R3, and R4 the associated regions, e.g. R1 =

[a∗1, a
ε
1]× [a∗2, b

∗
2], etc.

Observation: If S contains examples in all of R1, R2, R3, R4 then

err(ĥ,D) = P
(
{ĥ(x) = 0, h∗(x) = 1}

)
(17)

≤ P (R1 ∪R2 ∪R3 ∪R4) (18)

≤
4∑

j=1

P(Rj) = 4 · ε
4
= ε (19)

3. Define an event E such that E = {∀j = 1, ..., 4,S contains example in Rj}.

Rest of proof is left as an exercise:

Exercise:
Write E as an intersection

E =

4⋂
j=1

{S contains example inRj}

Using DeMorgan’s law and union bound, show P(E) ≥ 1− δ.

3 General Characterization of Infinite Hypothesis Classes

We will describe the VC dimension (VC coming from authors names Vapnik and Chervonenkis). This will
give us a more general tool to characterize the complexity of a hypothesis class that goes beyond hypothesis
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class sizes (we have seen that size fails for characterizing the complexity of infinite hypothesis classes.)

Definition:
Given hypothesis class H ⊆ (X → {±1}) and a sequence of unlabeled examples S = (x1, ..., xn) we define

the projection of H on S as

ΠH(S) = {(h(x1), ..., h(xn)) : h ∈ H} (20)

The size of this set will be the combination of possible labellings, which can be trivially bounded by:

|ΠH(S)| ≤ 2n. (21)

Example:
We consider the case where the data is a set of values from R, each with a label in ±1. We consider the

hypothesis class a threshold value which splits the real numbers.

H = {thresholds} = {ht : t ∈ R} (22)

t

− +

t1 t2 t3x1 x2

Possible labels:

t1 = ++
t2 = −+
t3 = −−

Figure 4: Example of threshold hypothesis function and possible labellings for a dataset of size 2.

ΠH(S) = {(−1,−1), (+1,+1), (−1,+1)} (23)

If |ΠH(S)| = 2n then H “shatters” S. The example above shows that H does not shatter (x1, x2) but
does shatter (x1).
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