CSC 588: Machine learning theory Spring 2022

Lecture 6: ERM Analysis; PAC Learning Infinite Hypothesis Classes
Lecturer: Chicheng Zhang Scribe: Ryan Murphy

1 Analysis of ERM

Theorem: Empirical Risk Minimization (ERM) with hypothesis class H with m training examples drawn
i.id. from D such that m > f(¢,6) = & (In|H| +In 2) outputs h € H such that with probability 1 — ¢

j < mi .
err (h,D) < minerr (h,D)+¢ (1)

Proof: We construct a favorable event E such that E = (0,4 {lerr(h,S) —err(h,D)| < §}. Event E

represents the case where the true error of every hypothesis in H differs from the empirical error by at most
5. In the case of event E, by the “key observation” from Lecture 4 with p = §,

h,D) < mi h,D . 2
err(h, L{g}}m(’ )+e (2)

To show P(E) > 1 — 4, it suffices to show P(E) < d. We construct another event B}, such that

By = {|err(h,8) — err(h, D)| > g} (3)
E=|] B (4)
heH

Where Vh € H empirical error deviates from generalization error by at most 5. What can we say about
chance of By? If we can bound Bj, we can use union bound.

D(By) < 2exp (2 . ’g_%;j) — 2exp (”f) < Izl (5)

View training error as an average of i.i.d. Bernoulli random variables. The union bound implies

0

a7 = O (6)

B(E) < Y P(B) < M-
heH

So we see the union bound trick does not ”blow up” sample complexity by too much — the sample com-
plexity’s dependence on |H] is only logarithmic.

Exercise: If we use Chebyshev’s inequality to bound Bj what sample complexity guarantees can we show
for ERM? (Hint: Tt will still give a valid upper bound but the bound will be worse.)

If we instead fix the sample budget what guarantee can we make about €7



Corollary: Set ¢ such that E% In % =m

2In|H| + 21In 2
I n|H|+2In 3 (7)
m

_ Therefore, ERM with H with a fixed budget of m i.i.d. training examples from D, outputs classifier
h € H such that with probability 1 — 9,

. [21n|[H| + 21n 2
err(h, D) < minerr(h,D) + M. (8)
heH m

We see the error bound is monotonically decreasing with sample size, and also depends on the log of
the size of the hypothesis class; this is called the ”Occam’s Razor” bound (Occam’s Razor = a short
explanation tends to be more valid than a long explanation.)

Question: In the context of Occam’s Razor, what does H actually mean? What if we double the possible
H?

We can think of D as some natural phenomenon, and we would like to pick a good explanation h for
it (i.e., err(h, D) is small). H is a set of candidate explanations. The cardinality of hypothesis class |H| is
complexity of explanation; the error err(h, D) is power or validity of explanation h.

Caveats of using Hoeffding’s Inequality: an example
Consider data drawn from a uniform distribution D such that X ~ uniform([0,1]). There is a threshold
at % and all samples less than % are negative, and all greater than % are positive.

Algorithm: (Memorization)
Given training set S, return a classifier that predicts perfectly on the training set. If sample is not in
training set always return +1:

~ : = : f S )
h(z) = Yi T =T . or some i )
+1 otherwise

Questions: .
1. What is A’s training error rate? A direct calculation yields that, err(h,S) =
2. Is it true that V6 > 0

S I(h(xi) # i) =0

3=

R N In
P | |err(h,S) — err(h,D)‘ <y =2 >1-67? (10)
m
3. What is h’s generalization error rate? A direct calculation yields that, err(ﬁ, D) = % because

P (ﬁ(x) = +1) =1
We now come back to answer question 2. To use Hoeffding’s inequality to analyze

err(h, S) = %i[ (ﬁ(mi) v y) (11)
=1

it must be the case that I (ﬁ(mz) # yl) are being drawn i.i.d. from Bernoulli(err(h, D)), but since the

mean parameter of this Bernoulli distribution is err(ﬁ, D) = % = 0, there is some contradiction. The problem

is that, to apply Hoeffding’s Inequality, we need h to be chosen before seeing the sample set S. In the case
of the memorization example h depends on S.



2 Infinite hypothesis classes: PAC learning variants
We have seen |H| < oo implies H is (agnostic) PAC learnable. What if |H| = co?

Example: a PAC learnable hypothesis class with infinite cardinality.
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Figure 1: Example of hypothesis class of 2d rectangles which we will show is PAC learnable despite having
an infinite cardinality.

Consider the case where samples are from R?, X = R?, and have binary labeling such that y = {0,1}.
We consider classifiers which are defined by axis-aligned rectangular regions.

H = {rectangles} = {hay by.a0,bs 1 01 < b1 & a2 < ba} (12)

hal,bhaz,bz (LC) = {

1 21 € [a1,b1] & 5 € [ag, b (13)
0 otherwise

Also, consider D realizable by H so data can be separated by a rectangle correctly.
Finally we consider algorithm 4. Given training set S return classifier h as the smallest rectangle
enclosing all positive examples in the training set. This is the ”closure” algorithm which attempts to output

a minimum covering rectangle.
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Figure 2: Example of estimator h based on a sample dataset S. Note that the optimal classifier h* contains
h with an error region.

We can analyze this algorithm’s performance in the PAC framework.

Claim: If A receives a training set S of sizem > % In 2 i.i.d. from D then with probability 1—d, err(h, D) < e.
(PAC is guaranteed)

Proof:
1. For h € H, define R(h) = (rectangle associated with h). As shown in figure 2, R(h) C R(h*). This
implies that h cannot make false negatives, only false positives.

Ve if h(z) =1 = h*(z) =1 (14)
h* = haz b7 ,a3,b5 (15)
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Figure 3: Example of thresholds which bound the error of each edge of the rectangle.

2. We can define a threshold very close to aj, aj such that

€

4
Similarly define b5, a5, and b5; also denote by Ri, Ra, R3, and R4 the associated regions, e.g. R; =

[aT, a5] X [a3,b3], ete.

P (z € [a, af] x [a3,b3]) = (16)

Observation: If S contains examples in all of Ry, Ry, R3, R4 then
err(h, D) = P ({ﬁ(x) = 0,h*(z) = 1}) (17)
<P (Rl URsUR3U R4) (18)

4
<Y P(Rj)=4--=¢ (19)
j=1

= M

3. Define an event E such that E = {Vj =1,...,4,S contains example in R;}.
Rest of proof is left as an exercise:
Exercise:

Write F as an intersection

4
E= ﬂ {8 contains example inR;}
j=1

Using DeMorgan’s law and union bound, show P(E) > 1 — ¢.

3 General Characterization of Infinite Hypothesis Classes

We will describe the VC dimension (VC coming from authors names Vapnik and Chervonenkis). This will
give us a more general tool to characterize the complexity of a hypothesis class that goes beyond hypothesis



class sizes (we have seen that size fails for characterizing the complexity of infinite hypothesis classes.)

Definition:
Given hypothesis class H C (X — {£1}) and a sequence of unlabeled examples S = (x1, ..., z,,) we define
the projection of H on S as

Iy (S) = {(h(x1), ..., h(xyn)) - h € H} (20)
The size of this set will be the combination of possible labellings, which can be trivially bounded by:
I (S)| < 2™. (21)

Example:
We consider the case where the data is a set of values from R, each with a label in +1. We consider the
hypothesis class a threshold value which splits the real numbers.

H = {thresholds} = {h; : t € R} (22)
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Figure 4: Example of threshold hypothesis function and possible labellings for a dataset of size 2.

My (S) ={(-1,-1), (+1,+1), (-1,+1)} (23)

If TI(S)| = 2™ then H “shatters” S. The example above shows that 7 does not shatter (z1,x2) but
does shatter (z1).



