CSC 588: Machine learning theory Spring 2022

Lecture 5: Hoeftding’s Inequality, Bernstein’s Inequality, ERM’s Guarantee
Lecturer: Chicheng Zhang Scribe: Yanan Wang

1 Proof of Lemma 2 for Hoeffding’s Inequality

Lemma 2. If Xi,---,X, are independent, for each i, X; is 07-SG, then > 1, a;X; is > ., a?0?-SG
valv Tty n.
To prove Lemma 2, We first prove two special cases:
aX; is a*0?-SG, (2.1)
X, + Xy is (0F + 03)-SG. (2.2)
Case 2.1 is proved in Lecture 3.
To show the proof of 2.2, let uy = E[X1], p2 = E[X3], Y = X1 + X3, E[Y] = p1 + po.
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= E[eM X171 |E[er(X2—H2)] (independence of X; and X»)
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Therefore, X1 + Xz is (07 + 03)-SG.
It is now straightforward to prove Lemma 2 using 2.1 and 2.2 inductively.

2 Proof of Lemma 3 for Hoeffding’s Inequality

Lemma 3. V random variable (r.v.) X taking value in interval [a,b], X is (b= a) -SG.

Proof. Want to show VA,
E[e)\(X—#)] < e(b7%)2A2 .
Let ¥(A\) = InE[e}X=1)], 4)()\) is called the cumulant generating function (cgf) of ¥ = X — p. It suffices
242
to show WA, ¢() < C=0A7
Using second-order Taylor expansion (with Lagrange Remainder) at 0, 3¢ between 0 and A,

B(N) = (0) + ¥/ (0)A + Wg) Ve 2

$(0) = 0.
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where, ¢/(0) = E[Y] = 0.

E[e*YY?] E[MY)]

P(A) = E[e"Y ] - E[e"Y] )%
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Let Z be r.v. with probability density function:

Exercise: Show E[Z] = %2, E[Z?] = 1.
Then,
V" () = E[2°] - (E[Z])?
= var(Z)
=E[(Z - E[Z])?]
<B[(Z - w) (E[Z] = argmin, E[(Z — w)?))
a;b — )% (set w = (%2 — ), and notice Z € [a — p, b — p])

—E[(Z —(

< (b_a)Q.
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3 Proof of Hoeffding’s Inequality

Hoeffding’s Inequality: Suppose Z1,- - , Z, are iid, Vi, Z; € [a,b], Z = L 3" | Z;, u = E[Z;], then, for all
€>0:

P(|Z — p| > €) < 2exp (—@27_“;2) :

Proof. As Z; € [a,b], Z; is %-SG according to Lemma 3.
According to Lemma 2, Z = 1 3" | Z; is (bzs)Q—SG.

Finally, as E[Z] = u, according to Lemma 1,
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Important Corollary For a classifier h, training set S: m iid training samples, Ve:
P(|err(h, S) — err(h, D)| > €) < 2exp (—2me?)

This is obtained by setting n = m,a = 0,b = 1, and each Z; = I(h(x;) # y;) is the mistake indicator of h on
example (x4, y;)-
Equivalently, by setting § = 2exp (—2me?):

In 2
— > <
vo,P | |err(h, S) — err(h, D)| > o | = d



4 Bernstein’s Inequality (taking r.v.’s refined information into ac-
count)

Let Xi,---, X, be iid random variables, Vi, |X; — E[X;]| < R, u = E[X;], 02 = var[X;], then, Ve > 0:
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If 02 < (b—a)?, then (x) < exp (—%), which indicates a more tighter bound than Hoeffding’s inequality.

Set a small € s.t. (x) < 4:
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Chicheng notes after lecture: the constants presented in the lecture were off by a factor of 2, which is corrected
here. This is because in the second <, we use A > B+ C < A > 2B and A > 2C, which introduces extra
constants 2.

40’2111% 4Rln% .

So we can select € > + =,

n

1 — 462ln2  4RIn2
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5.~ is a lower order term, compared with Hoeffding’s inequality’s result:

1< b—a)?lnZ
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it is more tight when o2 < (b — a)?.

5 ERM’s Guarantee

Theorem (ERM’s Guarantee). ERM with H has an agnostic PAC sample complexity of f(e,§) =
2 (In|H| +1n2); in other words, given m > f(e,8) iid training examples, w.p. 1 —§:
h(ERM output) satisfies:

h,D) < h,D) +
err(h, D) }lrélgerr( )+

Proof sketch. define
E=Npen {\ err(h, S) — err(h, D)| < g} .

If we show P(E) > 1—0, then we are done: indeed, using the key observation last time with u = §, then
when E happens,

err(h, D) < minerr(h, D) + €
heH



