1 Proof of Lemma 2 for Hoeffding's Inequality

Lemma 2. If X_{1}, \cdots, X_{n} are independent, for each i, X_{i} is σ_{i}^{2}-SG, then $\sum_{i=1}^{n} a_{i} X_{i}$ is $\sum_{i=1}^{n} a_{i}^{2} \sigma_{i}^{2}$-SG $\forall a_{1}, \cdots, a_{n}$.

To prove Lemma 2, We first prove two special cases:

$$
\begin{align*}
& a X_{i} \text { is } a^{2} \sigma_{i}^{2} \text {-SG } \tag{2.1}\\
& X_{1}+X_{2} \text { is }\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right) \text {-SG. } \tag{2.2}
\end{align*}
$$

Case 2.1 is proved in Lecture 3.
To show the proof of 2.2 , let $\mu_{1}=\mathbb{E}\left[X_{1}\right], \mu_{2}=\mathbb{E}\left[X_{2}\right], Y=X_{1}+X_{2}, \mathbb{E}[Y]=\mu_{1}+\mu_{2}$.

$$
\begin{aligned}
& \mathbb{E}\left[\mathrm{e}^{\lambda\left(Y-\left(\mu_{1}+\mu_{2}\right)\right)}\right] \\
& =\mathbb{E}\left[\mathrm{e}^{\lambda\left(X_{1}-\mu_{1}\right)} \mathrm{e}^{\lambda\left(X_{2}-\mu_{2}\right)}\right] \\
& =\mathbb{E}\left[\mathrm{e}^{\lambda\left(X_{1}-\mu_{1}\right)}\right] \mathbb{E}\left[\mathrm{e}^{\lambda\left(X_{2}-\mu_{2}\right)}\right] \\
& \leq \mathrm{e}^{\frac{\lambda^{2} \sigma_{1}^{2}}{2}} \mathrm{e}^{\frac{\lambda^{2} \sigma_{2}^{2}}{2}} \\
& \left.=\mathrm{e}^{\frac{\lambda^{2}\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)}{2}} . \quad \text { (independence of } X_{1} \text { and } X_{2}\right) \\
& \left(X_{i} \text { is } \sigma_{i}^{2}-\mathrm{SG}\right)
\end{aligned}
$$

Therefore, $X_{1}+X_{2}$ is $\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)$-SG.
It is now straightforward to prove Lemma 2 using 2.1 and 2.2 inductively.

2 Proof of Lemma 3 for Hoeffding's Inequality

Lemma 3. \forall random variable (r.v.) X taking value in interval $[a, b], X$ is $\frac{(b-a)^{2}}{4}$-SG.
Proof. Want to show $\forall \lambda$,

$$
\mathbb{E}\left[\mathrm{e}^{\lambda(\mathrm{X}-\mu)}\right] \leq \mathrm{e}^{\frac{(b-a)^{2} \lambda^{2}}{8}}
$$

Let $\psi(\lambda)=\ln \mathbb{E}\left[\mathrm{e}^{\lambda(\mathrm{X}-\mu)}\right], \psi(\lambda)$ is called the cumulant generating function (cgf) of $Y=X-\mu$. It suffices to show $\forall \lambda, \psi(\lambda) \leq \frac{(b-a)^{2} \lambda^{2}}{8}$.

Using second-order Taylor expansion (with Lagrange Remainder) at $0, \exists \xi$ between 0 and λ,

$$
\psi(\lambda)=\psi(0)+\psi^{\prime}(0) \lambda+\frac{\psi^{\prime \prime}(\xi)}{2} \lambda^{2}
$$

$\psi(0)=0$.

$$
\begin{aligned}
& \psi^{\prime}(\lambda) \\
& =\frac{1}{\mathbb{E}\left[e^{\lambda Y}\right]} \frac{\partial \mathbb{E}\left[e^{\lambda Y}\right]}{\partial \lambda} \\
& =\frac{\mathbb{E}\left[Y e^{\lambda Y}\right]}{\mathbb{E}\left[e^{\lambda Y}\right]}
\end{aligned}
$$

where, $\psi^{\prime}(0)=\mathbb{E}[Y]=0$.

$$
\psi^{\prime \prime}(\lambda)=\underbrace{\frac{\mathbb{E}\left[\mathrm{e}^{\lambda Y} Y^{2}\right]}{\mathbb{E}\left[\mathrm{e}^{\lambda Y}\right]}}_{* 1}-(\underbrace{\frac{\mathbb{E}\left[\mathrm{e}^{\lambda Y} Y\right]}{\mathbb{E}\left[\mathrm{e}^{\lambda Y}\right]}}_{* 2})^{2} .
$$

Let Z be r.v. with probability density function:

$$
P_{Z}(y)=\frac{P_{Y}(y) \mathrm{e}^{\lambda y}}{\int_{\mathbb{R}} P_{Y}(y) \mathrm{e}^{\lambda y} d y}
$$

Exercise: Show $\mathbb{E}[Z]=* 2, \mathbb{E}\left[Z^{2}\right]=* 1$.
Then,

$$
\begin{aligned}
\psi^{\prime \prime}(\lambda) & =\mathbb{E}\left[Z^{2}\right]-(\mathbb{E}[Z])^{2} \\
& =\operatorname{var}(Z) \\
& =\mathbb{E}\left[(Z-\mathbb{E}[Z])^{2}\right] \\
& \leq \mathbb{E}\left[(Z-w)^{2}\right] \\
& =\mathbb{E}\left[\left(Z-\left(\frac{a+b}{2}-\right.\right.\right. \\
& \leq \frac{(b-a)^{2}}{4} .
\end{aligned}
$$

$$
\leq \mathbb{E}\left[(Z-w)^{2}\right] \quad\left(\mathbb{E}[Z]=\operatorname{argmin}_{w} \mathbb{E}\left[(Z-w)^{2}\right]\right)
$$

$$
=\mathbb{E}\left[\left(Z-\left(\frac{a+b}{2}-\mu\right)\right)^{2}\right] \quad\left(\text { set } w=\left(\frac{a+b}{2}-\mu\right), \text { and notice } Z \in[a-\mu, b-\mu]\right)
$$

3 Proof of Hoeffding's Inequality

Hoeffding's Inequality: Suppose Z_{1}, \cdots, Z_{n} are iid, $\forall i, Z_{i} \in[a, b], \bar{Z}=\frac{1}{n} \sum_{i=1}^{n} Z_{i}, \mu=\mathbb{E}\left[Z_{i}\right]$, then, for all $\epsilon>0$:

$$
\mathbb{P}(|\bar{Z}-\mu| \geq \epsilon) \leq 2 \exp \left(-\frac{2 n \epsilon^{2}}{(b-a)^{2}}\right)
$$

Proof. As $Z_{i} \in[a, b], Z_{i}$ is $\frac{(b-a)^{2}}{4}$-SG according to Lemma 3.
According to Lemma 2, $\bar{Z}=\frac{1}{n} \sum_{i=1}^{n} Z_{i}$ is $\frac{(b-a)^{2}}{4 n}$-SG.
Finally, as $\mathbb{E}[\bar{Z}]=\mu$, according to Lemma 1 ,

$$
\mathbb{P}(|\bar{Z}-\mu| \geq \epsilon) \leq 2 \exp \left(-\frac{\epsilon^{2}}{2 \cdot \frac{(b-a)^{2}}{4 n}}\right)=2 \exp \left(-\frac{2 n \epsilon^{2}}{(b-a)^{2}}\right)
$$

Important Corollary For a classifier h, training set S : m iid training samples, $\forall \epsilon$:

$$
\mathbb{P}(|\operatorname{err}(h, S)-\operatorname{err}(h, D)| \geq \epsilon) \leq 2 \exp \left(-2 m \epsilon^{2}\right)
$$

This is obtained by setting $n=m, a=0, b=1$, and each $Z_{i}=I\left(h\left(x_{i}\right) \neq y_{i}\right)$ is the mistake indicator of h on example $\left(x_{i}, y_{i}\right)$.

Equivalently, by setting $\delta=2 \exp \left(-2 m \epsilon^{2}\right)$:

$$
\forall \delta, \mathbb{P}\left(|\operatorname{err}(h, S)-\operatorname{err}(h, D)| \geq \sqrt{\frac{\ln \frac{2}{\delta}}{2 m}}\right) \leq \delta
$$

4 Bernstein's Inequality (taking r.v.'s refined information into account)

Let X_{1}, \cdots, X_{n} be iid random variables, $\forall i,\left|X_{i}-\mathbb{E}\left[X_{i}\right]\right| \leq R, \mu=\mathbb{E}\left[X_{i}\right], \sigma^{2}=\operatorname{var}\left[X_{i}\right]$, then, $\forall \epsilon>0$:

$$
\left.\mathbb{P}\left(\left|\frac{1}{n} \sum_{i=1}^{n} X_{i}-\mu\right|\right) \geq \epsilon\right) \leq \underbrace{2 \exp \left(-\frac{n \epsilon^{2}}{2 \sigma^{2}+\frac{2}{3} R \epsilon}\right)}_{(*)}
$$

If $\sigma^{2} \ll(b-a)^{2}$, then $(*) \ll \exp \left(-\frac{n \epsilon^{2}}{(b-a)^{2}}\right)$, which indicates a more tighter bound than Hoeffding's inequality. Set a small ϵ s.t. $(*) \leq \delta$:

$$
\begin{aligned}
& 2 \exp \left(-\frac{n \epsilon^{2}}{2 \sigma^{2}+\frac{2}{3} R \epsilon}\right) \leq \delta \\
& \Leftarrow n \epsilon^{2} \geq\left(2 \sigma^{2}+\frac{2}{3} R \epsilon\right) \ln \frac{2}{\delta} \\
& \Leftarrow n \epsilon^{2} \geq 4 \sigma^{2} \ln \frac{2}{\delta} \text { and } n \epsilon^{2} \geq \frac{4}{3} R \epsilon \ln \frac{2}{\delta} \\
& \Leftarrow \epsilon \geq \sqrt{\frac{4 \sigma^{2} \ln \frac{2}{\delta}}{n}} \text { and } \epsilon \geq \frac{4 R \ln \frac{2}{\delta}}{3 n}
\end{aligned}
$$

Chicheng notes after lecture: the constants presented in the lecture were off by a factor of 2 , which is corrected here. This is because in the second \Leftarrow, we use $A \geq B+C \Leftarrow A \geq 2 B$ and $A \geq 2 C$, which introduces extra constants 2 .

So we can select $\epsilon \geq \sqrt{\frac{4 \sigma^{2} \ln \frac{2}{\delta}}{n}}+\frac{4 R \ln \frac{2}{\delta}}{3 n}$:

$$
\left.\mathbb{P}\left(\left|\frac{1}{n} \sum_{i=1}^{n} X_{i}-\mu\right|\right) \geq \sqrt{\frac{4 \sigma^{2} \ln \frac{2}{\delta}}{n}}+\frac{4 R \ln \frac{2}{\delta}}{3 n}\right) \leq \delta
$$

As $\frac{4 R \ln \frac{2}{\delta}}{3 n}$ is a lower order term, compared with Hoeffding's inequality's result:

$$
\left.\mathbb{P}\left(\left|\frac{1}{n} \sum_{i=1}^{n} X_{i}-\mu\right|\right) \geq \sqrt{\frac{(b-a)^{2} \ln \frac{2}{\delta}}{2 n}}\right) \leq \delta
$$

it is more tight when $\sigma^{2} \ll(b-a)^{2}$.

5 ERM's Guarantee

Theorem (ERM's Guarantee). ERM with \mathcal{H} has an agnostic PAC sample complexity of $f(\epsilon, \delta)=$ $\frac{2}{\epsilon^{2}}\left(\ln |\mathcal{H}|+\ln \frac{2}{\delta}\right)$; in other words, given $m \geq f(\epsilon, \delta)$ iid training examples, w.p. $1-\delta$:
\hat{h} (ERM output) satisfies:

$$
\operatorname{err}(\hat{h}, D) \leq \min _{h \in \mathcal{H}} \operatorname{err}(h, D)+\epsilon
$$

Proof sketch. define

$$
E=\cap_{h \in \mathcal{H}}\left\{|\operatorname{err}(h, S)-\operatorname{err}(h, D)| \leq \frac{\epsilon}{2}\right\}
$$

If we show $P(E) \geq 1-\delta$, then we are done: indeed, using the key observation last time with $\mu=\frac{\epsilon}{2}$, then when E happens,

$$
\operatorname{err}(\hat{h}, D) \leq \min _{h \in \mathcal{H}} \operatorname{err}(h, D)+\epsilon
$$

