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1 Proof of Lemma 2 for Hoeffding’s Inequality

Lemma 2. If X1, · · · , Xn are independent, for each i, Xi is σ2
i -SG, then

∑n
i=1 aiXi is

∑n
i=1 a

2
iσ

2
i -SG

∀a1, · · · , an.

To prove Lemma 2, We first prove two special cases:

aXi is a
2σ2

i -SG, (2.1)

X1 +X2 is (σ2
1 + σ2

2)-SG. (2.2)

Case 2.1 is proved in Lecture 3.
To show the proof of 2.2, let µ1 = E[X1], µ2 = E[X2], Y = X1 +X2,E[Y ] = µ1 + µ2.

E[eλ(Y−(µ1+µ2))]

= E[eλ(X1−µ1)eλ(X2−µ2)]

= E[eλ(X1−µ1)]E[eλ(X2−µ2)] (independence of X1 and X2)

≤ e
λ2σ2

1
2 e

λ2σ2
2

2 (Xi is σ
2
i -SG)

= e
λ2(σ2

1+σ2
2)

2 .

Therefore, X1 +X2 is (σ2
1 + σ2

2)-SG.
It is now straightforward to prove Lemma 2 using 2.1 and 2.2 inductively.

2 Proof of Lemma 3 for Hoeffding’s Inequality

Lemma 3. ∀ random variable (r.v.) X taking value in interval [a, b], X is (b−a)2

4 -SG.

Proof. Want to show ∀λ,
E[eλ(X−µ)] ≤ e

(b−a)2λ2

8 .

Let ψ(λ) = lnE[eλ(X−µ)], ψ(λ) is called the cumulant generating function (cgf) of Y = X − µ. It suffices

to show ∀λ, ψ(λ) ≤ (b−a)2λ2

8 .
Using second-order Taylor expansion (with Lagrange Remainder) at 0, ∃ξ between 0 and λ,

ψ(λ) = ψ(0) + ψ′(0)λ+
ψ′′(ξ)

2
λ2

ψ(0) = 0.

ψ′(λ)

=
1

E[eλY ]
∂E[eλY ]
∂λ

(Y = X − µ)

=
E[Y eλY ]
E[eλY ]

,

1



where, ψ′(0) = E[Y ] = 0.

ψ′′(λ) =
E[eλY Y 2]

E[eλY ]︸ ︷︷ ︸
∗1

−(
E[eλY Y ]

E[eλY ]︸ ︷︷ ︸
∗2

)2.

Let Z be r.v. with probability density function:

PZ(y) =
PY (y)e

λy∫
R PY (y)eλydy

.

Exercise: Show E[Z] = ∗2,E[Z2] = ∗1.
Then,

ψ′′(λ) = E[Z2]− (E[Z])2

= var(Z)

= E[(Z − E[Z])2]
≤ E[(Z − w)2] (E[Z] = argminwE[(Z − w)2])

= E[(Z − (
a+ b

2
− µ))2] (set w = (a+b

2 − µ), and notice Z ∈ [a− µ, b− µ])

≤ (b− a)2

4
.

3 Proof of Hoeffding’s Inequality

Hoeffding’s Inequality: Suppose Z1, · · · , Zn are iid, ∀i, Zi ∈ [a, b], Z̄ = 1
n

∑n
i=1 Zi, µ = E[Zi], then, for all

ϵ > 0:

P(|Z̄ − µ| ≥ ϵ) ≤ 2exp

(
− 2nϵ2

(b− a)2

)
.

Proof. As Zi ∈ [a, b], Zi is
(b−a)2

4 -SG according to Lemma 3.

According to Lemma 2, Z̄ = 1
n

∑n
i=1 Zi is

(b−a)2

4n -SG.
Finally, as E[Z̄] = µ, according to Lemma 1,

P(|Z̄ − µ| ≥ ϵ) ≤ 2exp

(
− ϵ2

2 · (b−a)2

4n

)
= 2exp

(
− 2nϵ2

(b− a)2

)
.

Important Corollary For a classifier h, training set S: m iid training samples, ∀ϵ:

P(| err(h, S)− err(h,D)| ≥ ϵ) ≤ 2exp
(
−2mϵ2

)
This is obtained by setting n = m, a = 0, b = 1, and each Zi = I(h(xi) ̸= yi) is the mistake indicator of h on
example (xi, yi).

Equivalently, by setting δ = 2exp
(
−2mϵ2

)
:

∀δ,P

| err(h, S)− err(h,D)| ≥

√
ln 2

δ

2m

 ≤ δ
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4 Bernstein’s Inequality (taking r.v.’s refined information into ac-
count)

Let X1, · · · , Xn be iid random variables, ∀i, |Xi − E[Xi]| ≤ R,µ = E[Xi], σ
2 = var[Xi], then, ∀ϵ > 0:

P(| 1
n

n∑
i=1

Xi − µ|) ≥ ϵ) ≤ 2exp

(
− nϵ2

2σ2 + 2
3Rϵ

)
︸ ︷︷ ︸

(∗)

.

If σ2 ≪ (b−a)2, then (∗) ≪ exp
(
− nϵ2

(b−a)2

)
, which indicates a more tighter bound than Hoeffding’s inequality.

Set a small ϵ s.t. (∗) ≤ δ:

2exp

(
− nϵ2

2σ2 + 2
3Rϵ

)
≤ δ

⇐ nϵ2 ≥ (2σ2 +
2

3
Rϵ)ln

2

δ

⇐ nϵ2 ≥ 4σ2ln
2

δ
and nϵ2 ≥ 4

3
Rϵln

2

δ

⇐ ϵ ≥

√
4σ2ln 2

δ

n
and ϵ ≥

4Rln 2
δ

3n
,

Chicheng notes after lecture: the constants presented in the lecture were off by a factor of 2, which is corrected
here. This is because in the second ⇐, we use A ≥ B + C ⇐ A ≥ 2B and A ≥ 2C, which introduces extra
constants 2.

So we can select ϵ ≥
√

4σ2ln 2
δ

n +
4Rln 2

δ

3n :

P

| 1
n

n∑
i=1

Xi − µ|) ≥

√
4σ2ln 2

δ

n
+

4Rln 2
δ

3n

 ≤ δ.

As
4Rln 2

δ

3n is a lower order term, compared with Hoeffding’s inequality’s result:

P

| 1
n

n∑
i=1

Xi − µ|) ≥

√
(b− a)2ln 2

δ

2n

 ≤ δ,

it is more tight when σ2 ≪ (b− a)2.

5 ERM’s Guarantee

Theorem (ERM’s Guarantee). ERM with H has an agnostic PAC sample complexity of f(ϵ, δ) =
2
ϵ2 (ln|H|+ ln 2

δ ); in other words, given m ≥ f(ϵ, δ) iid training examples, w.p. 1− δ:

ĥ(ERM output) satisfies:

err(ĥ, D) ≤ min
h∈H

err(h,D) + ϵ.

Proof sketch. define

E = ∩h∈H

{
| err(h, S)− err(h,D)| ≤ ϵ

2

}
.

If we show P (E) ≥ 1− δ, then we are done: indeed, using the key observation last time with µ = ϵ
2 , then

when E happens,
err(ĥ, D) ≤ min

h∈H
err(h,D) + ϵ.
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