CSC 588: Machine learning theory Spring 2022

Lecture 11: Proof of the uniform convergence theorem for VC classes
Lecturer: Chicheng Zhang Scribe: Minhang Zhou

1 Three Lemmas used in the proof of Uniform Convergence

In the last lecture, we have seen some proof of the Uniform Convergence results via the following three
lemmas. Lemma 1 helps us reduce the task of bounding something random to deterministic. Lemma 2 helps
us reduce bounding the expectation of the maximum of a bunch of infinite collection of random variables to
bounding the expectation of the maximum of finite collection of random variables. Lemma 3 helps us deal
with the expectation of the maximum of a finite collection of random variables.

Lemma 1. With probability 1 — §/2
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Lemma 2.(Symmetrization Lemma)
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Lemma 3.For any set S of size n
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In the previous lecture, we used Massart’s Finite Lemma to prove Lemma 3.

2 Proof of Massart’s Finite Lemma

Lemma 4(Massart’s Finite Lemma). If X1,..., Xy ~ are zero mean, o2-subgaussian, then
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Proof. For vVt > 0,
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Therefore, by using Jensen’s Inequality and subgaussian properties,
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Note that this bound holds for all ¢, we can choose ¢ that minimizes the right hand side to get the tightest
bound. This is achieved when t = 25‘2]\] . Thus, we have

E[max X;] < ov2InN

3 Proof of Lemma 1
Lemma 5(McDiarmid’s Lemma). If g is c-sensitive, Z;...Z,, are i.i.d from distribution D on V. Then:
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In other words, with probability 1 — d”:
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Def (sensitivity): g is c-sensitive if: for every ¢ € {1,...,n}, =z1,...,2n, 2’ € V, it always holds that
|g(zlv e 7ZTL) - 9(21, s 722'71721/'7214»17 s 7Z’n)| S C.
Remarks:

(1) g can take value in an interval of size nc, but what this lemma says is that, when receiving iid inputs, g
can "typically” take values in an interval of size c\/n

(2)McDiarmid’s Lemma implies Hoeffding’s Inequality, as the mean function over a V' = [a, b] has sensitivity
b—a
c= =4

n
(3)Example with large sensitivity constant c :
9(z1, vy 2n) = Median(zy, ..., zy,)

Here, ¢ can only be chosen as b — a, we can illustrate the idea by a simple example below:

Suppose we have n = 99 samples which include 49 a’s and 50 b's. If we change one input from b to a, then we
will have 50 a’s and 49 b’s. This would cost the median of the 99 samples changing from b to a. Therefore,
the worst-case ¢ can only choose a value which is as large as b—a and is also independent of the sample size n.

Proof of Lemma 1. Let’s examine the sensitivity parameter of

9(21, ..., zn) = sup(Es f(Z) — Ep f(Z))
ferF

Denote by S = (21, ..., 2n), S = (21, .+, Zi 1, 2}, Zi 41, -y Zn), We would like to show that
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The reason is as follows:

g(S) =sup F(f) F(f)=Esf(Z)-Epf(Z)
ferF

g(s?) = sup G(f) G(f) =Esw /(2) - Enf(Z)
Observe that, for Vf,

F() = G =1 (F(e) — FED) <

Now we can use the following fact to show Equation (1).
Fact: If for Vf
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Proof. We only show the upper bound; the lower bound can be shown symmetrically. Let

fo = argmax F(f)
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sup F(f) — sup G(f) = F(fo) — sup G(f) < F(fo) - G(fo) < a
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Lemma 1 follows by taking the above g with:
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4 Partial Proof of Lemma 2

Step 1: Use double sampling lemma to reduce bounding the uniform deviation between empirical average
and population average to bounding the uniform deviation between empirical average and another empirical
average (over a fresh “validation set”).

Lemma 1 (Double sampling lemma).

Es~pn ?lelg[]Esf(Z) —Epf(Z2)] <E s~pn sup[Esf(Z) — Es f(Z)]

It suffices to show: V.S,

supEs f(Z) —Epf(Z)] < Es/npn sup[Es f(Z) — Es f(2)]
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because by taking the expectation over S, we essentially get the double sampling lemma.
Fact: Suppose G is a random function that maps f to reals, then,

sup E[G(f)] < E[sup G(f)]
feF feF

Proof. With the purpose of concluding the double sampling lemma, we pick

fo = argmax E[G(f)]
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Since G(fo) < sup G(f), E[G(fo)] < E[sup G(f)]
fer fer

Step 2: introduce random signs:



Figure 1: A simple example for Lemma 2

Lemma 2. For any fized (o1, ...,0,) € {£1}, we have:

LB o on sup(S(f(51) — F(2)) = 2K soom sup(S(f() — F(21) o)

n s'~Dn n s ~pn
fer = fer i
Therefore,

VE s (3 (/) — ) = B murnn sup(3 ()~ £(D) o)

n s/'~bDmn
fer i3 i=1

We leave the proof of the general lemma to the readers, and only illustrate the key idea via a simple
example. Example: n = 2,01 = —1,09 = +1.
From equations above, we have:

1

LHS = gEs 2,00 544 ?gjpr(f (21) = f(21) + f(z2) = f(23)) = B, 2t 20,5 (P21, 21, 22, 23)]
1
RHS = éEzhzz,zi,zéND“ ?lelg__(f(zi) - f(zl) + f(z2) - f(zé)) = Ez1,zi,z2,z’2 [h(zh z/la Zéa 22)]
We define:
h(wy, we, w3, ws) = ]Scug(f(wﬁ = f(w2) + f(ws) — f(wa))
€
Also, note:

d d
(Zl,Zi,ZQ,Zé) = (Z117217Z2’Zé) = D4’

where 2 denotes equal in distribution.
Therefore,

Ezl,z{,zz,zé [h(zh le) Zéa ZZ)] = Ezl,zﬁ,zz,zg [h(zl’ zia 22, Zé)] = E‘LU1,‘LUQ,‘LU3,‘UJ4ND4 [h(wla W2, W3, w4)] .

See Figure 1 for an illustration.
To be continued...



