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1 Three Lemmas used in the proof of Uniform Convergence

In the last lecture, we have seen some proof of the Uniform Convergence results via the following three
lemmas. Lemma 1 helps us reduce the task of bounding something random to deterministic. Lemma 2 helps
us reduce bounding the expectation of the maximum of a bunch of infinite collection of random variables to
bounding the expectation of the maximum of finite collection of random variables. Lemma 3 helps us deal
with the expectation of the maximum of a finite collection of random variables.

Lemma 1.With probability 1− δ/2

sup
f∈F

ES [f(Z)]− ED[f(Z)] ≤ E

[
sup
f∈F

ES [f(Z)]− ED[f(Z)]

]
+

√
ln(4/δ)

2n

Lemma 2.(Symmetrization Lemma)

E

[
sup
f∈F

ES [f(Z)]− ED[f(Z)]

]
≤ 2Radn(F)

where
Radn(f) = ES∼Dm RadS(f)

and

RadS(F) =
1

n
Eσ∼U(±1)n sup

f∈F

[
n∑

i=1

f(zi)σi

]
Lemma 3.For any set S of size n

RadS(F) ≤
√

2 lnS(F , n)

n

In the previous lecture, we used Massart’s Finite Lemma to prove Lemma 3.

2 Proof of Massart’s Finite Lemma

Lemma 4(Massart’s Finite Lemma). If X1, ..., XN ∼ are zero mean, σ2-subgaussian, then

E[ N
max
i=1

Xi] ≤ σ
√
2 lnN

Proof. For ∀t > 0,

max
i

Xi ≤
ln(

∑N
i=1 e

txi)

t

Therefore, by using Jensen’s Inequality and subgaussian properties,
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Emax
i

Xi ≤
ln(

∑N
i=1 e

txi)

t

≤
ln(E

∑N
i=1 e

txi)

t

≤ lnN

t
+

σ2t

2

Note that this bound holds for all t, we can choose t that minimizes the right hand side to get the tightest

bound. This is achieved when t =
√

2 lnN
σ2 . Thus, we have

E[max
i

Xi] ≤ σ
√
2 lnN

3 Proof of Lemma 1

Lemma 5(McDiarmid’s Lemma). If g is c-sensitive, Z1...Zn are i.i.d from distribution D on V . Then:

P (|g(Z1, ..., Zn)− Eg(Z1, ..., Zn)| ≥ ϵ) ≤ 2 exp(
−2ϵ2

nc2
),

In other words, with probability 1− δ′:

|g(Z1, ..., Zn)− Eg(Z1, ..., Zn)| ≤ c

√
n

2
ln(

2

δ′
)

Def(sensitivity): g is c-sensitive if: for every i ∈ {1, . . . , n}, z1, ..., zn, zi
′ ∈ V , it always holds that

|g(z1, . . . , zn)− g(z1, . . . , zi−1, z
′
i, zi+1, . . . , zn)| ≤ c.

Remarks:
(1) g can take value in an interval of size nc, but what this lemma says is that, when receiving iid inputs, g
can ”typically” take values in an interval of size c

√
n

(2)McDiarmid’s Lemma implies Hoeffding’s Inequality, as the mean function over a V = [a, b] has sensitivity
c = b−a

n .
(3)Example with large sensitivity constant c :

g(z1, ..., zn) = Median(z1, ..., zn)

Here, c can only be chosen as b− a, we can illustrate the idea by a simple example below:
Suppose we have n = 99 samples which include 49 a′s and 50 b′s. If we change one input from b to a, then we
will have 50 a′s and 49 b′s. This would cost the median of the 99 samples changing from b to a. Therefore,
the worst-case c can only choose a value which is as large as b−a and is also independent of the sample size n.

Proof of Lemma 1. Let’s examine the sensitivity parameter of

g(z1, ..., zn) = sup
f∈F

(ESf(Z)− EDf(Z))

Denote by S = (z1, ..., zn), S
(i) = (z1, ..., zi−1, z

′
i, zi+1, ..., zn), we would like to show that

|g(S)− g(S(i))| ≤ 1

n
(1)
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The reason is as follows:

g(S) = sup
f∈F

F (f) F (f) = ESf(Z)− EDf(Z)

g(S(i)) = sup
f∈F

G(f) G(f) = ES(i)f(Z)− EDf(Z)

Observe that, for ∀f ,

|F (f)−G(f)| = | 1
n
(f(zi)− f(z′i))| ≤

1

n

Now we can use the following fact to show Equation (1).
Fact: If for ∀f

|F (f)−G(f)| ≤ α

then
−α ≤ sup

f∈F
F (f)− sup

f∈F
G(f) ≤ α

Proof. We only show the upper bound; the lower bound can be shown symmetrically. Let

f0 = argmax
f∈F

F (f)

sup
f∈F

F (f)− sup
f∈F

G(f) = F (f0)− sup
f∈F

G(f) ≤ F (f0)−G(f0) ≤ α

Lemma 1 follows by taking the above g with:

c =
1

n
, δ′ =

δ

2

4 Partial Proof of Lemma 2

Step 1: Use double sampling lemma to reduce bounding the uniform deviation between empirical average
and population average to bounding the uniform deviation between empirical average and another empirical
average (over a fresh “validation set”).

Lemma 1 (Double sampling lemma).

ES∼Dn sup
f∈F

[ESf(Z)− EDf(Z)] ≤ E S∼Dn

S′∼Dn
sup[ESf(Z)− ES′f(Z)]

It suffices to show: ∀S,

sup
f∈F

[ESf(Z)− EDf(Z)] ≤ ES′∼Dn sup
f∈F

[ESf(Z)− ES′f(Z)]

because by taking the expectation over S, we essentially get the double sampling lemma.
Fact: Suppose G is a random function that maps f to reals, then,

sup
f∈F

E[G(f)] ≤ E[sup
f∈F

G(f)]

Proof. With the purpose of concluding the double sampling lemma, we pick

f0 = argmax
f∈F

E[G(f)]

Since G(f0) ≤ sup
f∈F

G(f), E[G(f0)] ≤ E[sup
f∈F

G(f)]

Step 2: introduce random signs:
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Figure 1: A simple example for Lemma 2

Lemma 2. For any fixed (σ1, ..., σn) ∈ {±1}, we have:

1

n
E S∼Dn

S′∼Dn
sup
f∈F

(

n∑
i=1

(f(zi)− f(z′i))) =
1

n
E S∼Dn

S′∼Dn
sup
f∈F

(

n∑
i=1

(f(zi)− f(z′i))σi)

Therefore,

1

n
E S∼Dn

S′∼Dn
sup
f∈F

(

n∑
i=1

(f(zi)− f(z′i))) =
1

n
ES,S′,σ∼U(±1)n sup

f∈F
(

n∑
i=1

(f(zi)− f(z′i))σi)

We leave the proof of the general lemma to the readers, and only illustrate the key idea via a simple
example. Example: n = 2, σ1 = −1, σ2 = +1.
From equations above, we have:

LHS =
1

2
Ez1,z2,z′

1,z
′
2∼D4 sup

f∈F
(f(z1)− f(z′1) + f(z2)− f(z′2)) = Ez1,z′

1,z2,z
′
2
[h(z1, z

′
1, z2, z

′
2)]

RHS =
1

2
Ez1,z2,z′

1,z
′
2∼D4 sup

f∈F
(f(z′1)− f(z1) + f(z2)− f(z′2)) = Ez1,z′

1,z2,z
′
2
[h(z1, z

′
1, z

′
2, z2)]

We define:
h(w1, w2, w3, w4) = sup

f∈F
(f(w1)− f(w2) + f(w3)− f(w4))

Also, note:

(z1, z
′
1, z2, z

′
2)

d
= (z′1, z1, z2, z

′
2)

d
= D4,

where
d
= denotes equal in distribution.

Therefore,

Ez1,z′
1,z2,z

′
2
[h(z1, z

′
1, z

′
2, z2)] = Ez1,z′

1,z2,z
′
2
[h(z1, z

′
1, z2, z

′
2)] = Ew1,w2,w3,w4∼D4 [h(w1, w2, w3, w4)] .

See Figure 1 for an illustration.
To be continued...

4


