CSC 588: Machine learning theorySpring 2022Lecture 10: Uniform convergence for VC classes; Rademacher complexityLecturer: Chicheng ZhangScribe: Yuanyuan Sun

1 Uniform Convergence Theorems

Theorem 1: Given a hypothesis class \mathcal{H} with $VC(\mathcal{H}) = d$, a set of *n* iid training samples $(x_1, y_1), \ldots, (x_n, y_n)$ from *D*, with probability $1 - \delta$,

$$\sup_{h \in \mathcal{H}} |\operatorname{err}(h, S) - \operatorname{err}(h, D)| \le c_1 \sqrt{\frac{\ln S(\mathcal{H}, n) + \ln \frac{1}{\delta}}{n}} \le c_2 \sqrt{\frac{d \ln \frac{n}{d} + \ln \frac{1}{\delta}}{n}}$$

for constant $c_1, c_2 > 0$.

Theorem 2: Suppose $\mathcal{F} \subseteq (\mathcal{Z} \to \{0,1\}), S = (z_1, \ldots, z_n)$ iid samples from distribution D, with probability $1 - \delta$,

$$\sup_{f \in \mathcal{F}} |\mathbb{E}_S[f(Z)] - \mathbb{E}_D[f(Z)]| \le \sqrt{\frac{32(\ln S(\mathcal{F}, n) + \ln \frac{4}{\delta})}{n}}$$

Reminder: $\mathcal{Z} = \mathcal{X} \times \mathcal{Y}, z = (x, y), \mathcal{F} = \{l_h : h \in \mathcal{H}\}$ with $l_h(x, y) = I(h(x) \neq y)$.

2 Example: Glivenko-Cantelli Theorem

Given the distribution D over \mathbb{R} and iid samples z_1, \ldots, z_n drawn from D. The empirical cumulative distribution function (CDF) is defined as

$$F_n(t) = \frac{1}{n} \sum_{i=1}^n I(z_i \le t)$$

The population CDF is defined as:

$$F(t) = \mathbb{P}_{z \sim D}(z \le t)$$

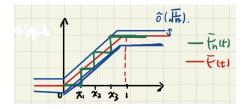


Figure 1: CDF and population CDF

Theorem 2 can be used to bound $\sup_{t \in \mathbb{R}} |F_n(t) - F(t)|$ with probability $1 - \delta$. Define $\mathcal{F} = \{h_t(x) = I(x \le t) : t \in \mathbb{R}\}$. Then

$$F_n(t) = \mathbb{E}_S[h_t(Z)]$$
$$F(t) = \mathbb{E}_D[h_t(Z)]$$

According to Theorem 2

$$\sup_{t \in \mathbb{R}} |F_n(t) - F(t)| = \sup_{t \in \mathbb{R}} |\mathbb{E}_S f(z) - \mathbb{E}_D f(z)|$$
$$\leq O\left(\sqrt{\frac{\ln \frac{1}{\delta} + \ln S(\mathcal{F}, n)}{n}}\right)$$
$$\leq \tilde{O}\left(\sqrt{\frac{1}{n}}\right)$$

3 Proof of uniform convergence theorem

Here we only show the upper concentration bound that with probability $1 - \frac{\delta}{2}$,

$$\sup_{f \in \mathcal{F}} \mathbb{E}_S f(Z) - \mathbb{E}_D f(Z) \le \sqrt{\frac{32\left(\ln \frac{4}{\delta} + \ln S(\mathcal{F}, n)\right)}{n}} =: \epsilon(\mathcal{F}, n)$$

Exercise: The similar logic applies to show the lower concentration bound which is with probability $1 - \delta/2$

$$\sup_{f \in \mathcal{F}} (-\mathbb{E}_S f(z)) - (-\mathbb{E}_D f(z)) \le \epsilon(\mathcal{F}, n)$$

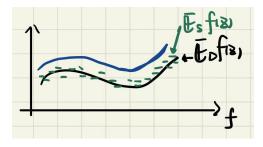


Figure 2: upper concentration bound

Lemma 1 With probability $1 - \frac{\delta}{2}$:

$$\sup_{f \in \mathcal{F}} \mathbb{E}_S f(Z) - \mathbb{E}_D f(Z) \le \mathbb{E} \left[\sup_{f \in \mathcal{F}} \mathbb{E}_S f(Z) - \mathbb{E}_D f(Z) \right] + \sqrt{\frac{\ln \frac{4}{\delta}}{2n}}$$

Notes: LHS is sample-based uniform deviation which can be considered as r.v. depending on sample S; RHS consists of expected uniform deviation $\mathbb{E}\left[\sup_{f\in\mathcal{F}}\mathbb{E}_S f(z) - \mathbb{E}_D f(z)\right]$ and a term $\sqrt{\frac{\ln\frac{4}{\delta}}{2n}}$ which is indepedent of the complexity of \mathcal{F} .

Lemma 2 (Symmetrization)

$$\mathbb{E}_{S \sim D^n} \left[\sup_{f \in \mathcal{F}} \mathbb{E}_S f(z) - \mathbb{E}_D f(z) \right] \leq \frac{2}{n} \mathbb{E}_{S \sim D^n} \mathbb{E}_{\sigma \sim U(\pm 1)^n} \left[\sup_{f \in \mathcal{F}} \sum_{i=1}^n f(z_i) \sigma_i \right]$$
$$=: 2 \operatorname{Rad}_n(\mathcal{F})$$

Remarks:

1. With the complexity of \mathcal{F} increases, both the LHS and the RHS increase.

2. LHS = expectation over the maximum of an infinite collection of r.v.'s; RHS = expectation over the maximum of a finite collection of r.v.'s. So we have reduced bounding something hard to reason about to something much easier to reason about.

3. LHS: $\mathbb{E}_S f(Z) - \mathbb{E}_D f(Z)$ has asymmetric distribution; RHS: $\sum_{i=1}^n f(z_i)\sigma_i$ has symmetric distribution(with PDF symmetric around 0).

Definition (Rademacher Complexity) With class \mathcal{F} and sample set S of size n, the Empirical Rademacher Complexity of \mathcal{F} is defined as

$$\operatorname{Rad}_{S}(\mathcal{F}) = \frac{1}{n} \mathbb{E}_{\sigma \sim U(\pm 1)^{n}} \left[\sup_{f \in \mathcal{F}} \sum_{i=1}^{n} f(z_{i}) \sigma_{i} \right]$$

The Population/distribution Rademacher Complexity of \mathcal{F} is defined as

$$\operatorname{Rad}_n(\mathcal{F}) = \mathbb{E}_{S \sim D^n} \operatorname{Rad}_S(\mathcal{F})$$

Here $U(\pm 1)$, the uniform distribution over $\{\pm 1\}$ is called the Rademacher distribution, hence the name Rademacher complexity.

e.g.

1. If $\mathcal{F} = \{f\}, \operatorname{Rad}_S(\mathcal{F}) = 0.$

2. If $\mathcal{F} = \{ \text{ all functions from } \mathcal{Z} \text{ to } \{\pm 1\} \}, \operatorname{Rad}_{S}(\mathcal{F}) = 1.$

3. If $\mathcal{F} = \{$ all functions from \mathcal{Z} to $\{0,1\}\}$, $\operatorname{Rad}_S(\mathcal{F}) = \frac{1}{2}$. (This is an exercise.)

Lemma 3 (Relating Rademacher complexity to growth function) For any sample set S of size n:

$$\operatorname{Rad}_{S}(\mathcal{F}) \leq \sqrt{\frac{2\ln S(\mathcal{F}, n)}{n}}$$

Consequently

$$\operatorname{Rad}_n(\mathcal{F}) \le \sqrt{\frac{2\ln S(\mathcal{F}, n)}{n}}$$

Proof of Theorem 2:

$$\sup_{f \in \mathcal{F}} \mathbb{E}_S f(Z) - \mathbb{E}_D f(Z) \le \sqrt{\frac{\ln \frac{4}{\delta}}{2n}} + 2 \operatorname{Rad}_n(\mathcal{F})$$
$$\le \sqrt{\frac{\ln \frac{4}{\delta}}{2n}} + 2\sqrt{\frac{2 \ln S(\mathcal{F}, n)}{n}}$$
$$\le \epsilon(\mathcal{F}, n)$$

4 Proof of Lemma 3

For all $(b_1, \ldots, b_n) \in \Pi_{\mathcal{F}}(S)$, there exists an f from \mathcal{F} , such that it achieves this labeling on $S = (z_1, \ldots, z_n)$. Therefore, $\operatorname{Rad}_S(\mathcal{F})$ can be equivalently written as:

$$\operatorname{Rad}_{S}(\mathcal{F}) = \frac{1}{n} \mathbb{E}_{\sigma \sim U(\pm 1)^{n}} \left[\sup_{\vec{b} = (b_{1}, \dots, b_{n}) \in \Pi_{\mathcal{F}}(S)} \sum_{i=1}^{n} b_{i} \sigma_{i} \right]$$

with $|\Pi_{\mathcal{F}}(S)| \leq S(\mathcal{F}, n)$. Denote the random variable $X_b = \sum_{i=1}^n b_i \sigma_i$. Therefore, the quantity we take expectation over is the maximum of at most $S(\mathcal{F}, n)$ zero-mean random variables.

Massart's Finite lemma Suppose X_1, \ldots, X_N are zero mean, σ^2 -SG, then

$$\mathbb{E}\left[\max_{i=1}^{N} X_{i}\right] \leq \sigma \cdot \sqrt{2\ln N}$$

One proof idea of Massart's Lemma (This is an exercise): We aim to bound $\mathbb{E}\left[\max_{i=1}^{N}|X_{i}|\right]$. As for general nonnegative random variables Y, $\mathbb{E}\left[Y\right] = \int_{0}^{\infty} \mathbb{P}(Y \ge z) \, dz$, it suffices to control the probability tail of random variable $\max_{i=1}^{N} |X_{i}|$. To this end, recall that if X_{i} is σ^{2} -SG, then $\forall z, \mathbb{P}(|X_{i}| \ge z) \le 2 \exp\left(-\frac{z^{2}}{2\sigma^{2}}\right)$. Hence $\mathbb{P}(\max_{i}|X_{i}|\ge z) \le \min\left(2N \exp\left(-\frac{z^{2}}{2\sigma^{2}}\right), 1\right)$. Therefore,

$$\mathbb{E}\left[\max_{i=1}^{N} |X_i|\right] \le \int_0^\infty \min\left(2N \exp\left(-\frac{z^2}{2\sigma^2}\right), 1\right) \mathrm{d}z.$$

Calculating the integral gives a weaker version of Massart's Lemma (with slightly looser constants.) \Box

Applying Massart's Lemma, X_b is *n*-SG, $N \leq S(\mathcal{F}, n)$, then:

$$\operatorname{Rad}_{S}(\mathcal{F}) \leq \frac{1}{n} \cdot \sqrt{n} \cdot \sqrt{2 \ln S(\mathcal{F}, n)} \leq \sqrt{\frac{2 \ln S(\mathcal{F}, n)}{n}}.$$