
CSC 588: Machine learning theory Spring 2022

Lecture 10: Uniform convergence for VC classes; Rademacher complexity
Lecturer: Chicheng Zhang Scribe: Yuanyuan Sun

1 Uniform Convergence Theorems

Theorem 1: Given a hypothesis classH with V C(H) = d, a set of n iid training samples (x1, y1), . . . , (xn, yn)
from D, with probability 1− δ,

sup
h∈H

| err(h, S)− err(h,D)| ≤ c1

√
lnS(H, n) + ln 1

δ

n
≤ c2

√
d ln n

d + ln 1
δ

n

for constant c1, c2 > 0.

Theorem 2: Suppose F ⊆ (Z → {0, 1}), S = (z1, . . . , zn) iid samples from distribution D, with probability
1− δ,

sup
f∈F

|ES [f(Z)]− ED[f(Z)]| ≤

√
32(lnS(F , n) + ln 4

δ )

n

Reminder: Z = X × Y, z = (x, y), F = {lh : h ∈ H} with lh(x, y) = I(h(x) ̸= y).

2 Example: Glivenko-Cantelli Theorem

Given the distribution D over R and iid samples z1, . . . , zn drawn from D. The empirical cumulative
distribution function (CDF) is defined as

Fn(t) =
1

n

n∑
i=1

I(zi ≤ t)

The population CDF is defined as:
F (t) = Pz∼D(z ≤ t)

Figure 1: CDF and population CDF

Theorem 2 can be used to bound supt∈R |Fn(t)− F (t)| with probability 1− δ.
Define F = {ht(x) = I(x ≤ t) : t ∈ R}. Then

Fn(t) = ES [ht(Z)]

F (t) = ED[ht(Z)]

1



According to Theorem 2
sup
t∈R

|Fn(t)− F (t)| = sup
t∈R

|ESf(z)− EDf(z)|

≤ O


√

ln 1
δ + lnS(F , n)

n


≤ Õ

(√
1

n

)

3 Proof of uniform convergence theorem

Here we only show the upper concentration bound that with probability 1− δ
2 ,

sup
f∈F

ESf(Z)− EDf(Z) ≤

√
32
(
ln 4

δ + lnS(F , n)
)

n
=: ϵ(F , n)

Exercise: The similar logic applies to show the lower concentration bound which is with probability 1− δ/2

sup
f∈F

(−ESf(z))− (−EDf(z)) ≤ ϵ(F , n)

Figure 2: upper concentration bound

Lemma 1 With probability 1− δ
2 :

sup
f∈F

ESf(Z)− EDf(Z) ≤ E

[
sup
f∈F

ESf(Z)− EDf(Z)

]
+

√
ln 4

δ

2n

Notes: LHS is sample-based uniform deviation which can be considered as r.v. depending on sample S; RHS

consists of expected uniform deviation E
[
supf∈F ESf(z)− EDf(z)

]
and a term

√
ln 4

δ

2n which is indepedent

of the complexity of F .

Lemma 2 (Symmetrization)

ES∼Dn

[
sup
f∈F

ESf(z)− EDf(z)

]
≤ 2

n
ES∼DnEσ∼U(±1)n

sup
f∈F

n∑
i=1

f(zi)σi


=: 2Radn(F)

Remarks:
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1. With the complexity of F increases, both the LHS and the RHS increase.
2. LHS = expectation over the maximum of an infinite collection of r.v.’s; RHS = expectation over the

maximum of a finite collection of r.v.’s. So we have reduced bounding something hard to reason about to
something much easier to reason about.

3. LHS: ESf(Z) − EDf(Z) has asymmetric distribution; RHS:
∑n

i=1 f(zi)σi has symmetric distribu-
tion(with PDF symmetric around 0).

Definition (Rademacher Complexity) With class F and sample set S of size n, the Empirical Rademacher
Complexity of F is defined as

RadS(F) =
1

n
Eσ∼U(±1)n

sup
f∈F

n∑
i=1

f(zi)σi


The Population/distribution Rademacher Complexity of F is defined as

Radn(F) = ES∼Dn RadS(F)

Here U(±1), the uniform distribution over {±1} is called the Rademacher distribution, hence the name
Rademacher complexity.
e.g.

1. If F = {f},RadS(F) = 0.
2. If F = { all functions from Z to {±1}}, RadS(F) = 1.
3. If F = { all functions from Z to {0, 1}}, RadS(F) = 1

2 . (This is an exercise.)

Lemma 3 (Relating Rademacher complexity to growth function) For any sample set S of size n:

RadS(F) ≤
√

2 lnS(F , n)

n

Consequently

Radn(F) ≤
√

2 lnS(F , n)

n

Proof of Theorem 2:

sup
f∈F

ESf(Z)− EDf(Z) ≤

√
ln 4

δ

2n
+ 2Radn(F)

≤

√
ln 4

δ

2n
+ 2

√
2 lnS(F , n)

n

≤ ϵ(F , n)

4 Proof of Lemma 3

For all (b1, . . . , bn) ∈ ΠF (S), there exists an f from F , such that it achieves this labeling on S = (z1, . . . , zn).
Therefore, RadS(F) can be equivalently written as:

RadS(F) =
1

n
Eσ∼U(±1)n

 sup
b⃗=(b1,...,bn)∈ΠF (S)

n∑
i=1

biσi
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with |ΠF (S)| ≤ S(F , n). Denote the random variable Xb =
∑n

i=1 biσi. Therefore, the quantity we take
expectation over is the maximum of at most S(F , n) zero-mean random variables.

Massart’s Finite lemma Suppose X1, . . . , XN are zero mean, σ2-SG, then

E
[

N
max
i=1

Xi

]
≤ σ ·

√
2 lnN

One proof idea of Massart’s Lemma (This is an exercise): We aim to bound E
[
maxNi=1|Xi|

]
. As for general

nonnegative random variables Y , E [Y ] =
∫∞
0

P(Y ≥ z) dz, it suffices to control the probability tail of random

variable maxNi=1|Xi|. To this end, recall that if Xi is σ2-SG, then ∀z,P(|Xi| ≥ z) ≤ 2 exp
(
− z2

2σ2

)
. Hence

P(maxi |Xi| ≥ z) ≤ min

(
2N exp

(
− z2

2σ2

)
, 1

)
. Therefore,

E
[

N
max
i=1

|Xi|
]
≤
∫ ∞

0

min

2N exp

(
− z2

2σ2

)
, 1

 dz.

Calculating the integral gives a weaker version of Massart’s Lemma (with slightly looser constants.)

Applying Massart’s Lemma, Xb is n-SG, N ≤ S(F , n), then:

RadS(F) ≤ 1

n
·
√
n ·
√
2 lnS(F , n) ≤

√
2 lnS(F , n)

n
.
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