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Introduction

In the boosting lecture, we saw:

Theorem

Suppose base class B is finite, C(B) = {3>_c5 anh(X) : >pep lan] <1}
is the set of voting classifiers over B. Fix margin 6 € [0,1]. Then, for
any distribution D, with probability 1— 6, for all f € C(B),

n 1Bl
Pp(yf(x) < 0) < Ps(yf(x) < 6)+0 (;\/ n 5 )
—_——— m
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Overview of this lecture

Questions:

- Can we develop some geometric intuition on this result?

- Can we generalize this result to analyze other large-margin
classifiers?

- How can we prove this result?

- Can we use the insights obtained to design practical algorithms?



A geometric interpretation of boosting’s margin bound

- Llet B={h,...,hq}
- For every x, define its corresponding z = (h4(x), . .., hg(x))
- Any element in C(B), fo(X) = ZL a;jhi(x) can be alternatively
written as g4 (2) = (o, 2)
Theorem (Restated version)
Fix margin 6 € [0,1]. Then, for any distribution D, with probability
1— 4, for all a such that |||, <1,

>l

Pp(y(a,z) <0) < Ps(y(e,z)<80) 40 (; '”)
—_— m

“Margin error” of 9o (2) = («, 2)



Margin bounds for linear classifiers: general ¢;/(,, version

Theorem (general ¢, /¢., margin bound)
Fix By, R~ > 0, and margin 6 € (0, BiR]. Suppose D is a distribution

over {x € R : |[X||loc < Roo} x {&£1}. Then, with probability 1 6, for
all w € RY such that ||w|}; < B;,

Po(y (w,X) < 0) < Ps(y (w,x) < )+ 0 (quw |mg)

Remarks:
- Larger § — smaller “generalization gap” term

- The bound is almost-dimension free, cf. VC theory (O(\/%) term)

- Scale-invariance: scaling w and @ by the same factor (e.g. 10)
results in the same bound



Margin error in linear classification: an illustration




Proof of general ¢;/¢,, margin bound

Step 1: Bridging 0-1 error and margin error using the “ramp-loss”
Lo(W, (X, Y)) = po(y (w, X)), where

igzée)
1, z< T@£°) 17\ 4
¢0(Z): 17%7 Sa {__=£>,
0, °l e 2

observe:
1. ¢p is g-Lipschitz
2. 1(z<0) < ¢o(2) < I(z < 0), therefore:

Lo(w, D) = Ep [o(w, (x,¥))] Z Po(y {w,x) < 0),

Lo(w, S) = Es [lo(w, (x,y))] < Ps(y (w,x) < 6).

Are Ly(w,S) and Ly(w, D) close?



“margin bound (cont’d)

Step 2: Uniform concentration between Ly(w,S) and Ly(w, D)

1. Last lecture = With probability 1 — 4, for all w such that
wllr < Bx:

In 4
|Lo(w, S) — Lo(w, D)| < 4\/% + 4 Radn (F),

where F = {lo(w, (x,¥)) : W] < By}
2. Bounding Radm(F):

Radm(F)

E,

sup > iy (w, M

wllwll1<By 55
m

sup Za;y,»(vv,x,) (Contraction ineq.)
willwllh <8152

1
. _E,
0 m
— 1 Radn(n)
= Rady (%)

where H = {gw(x) := (w,x) : ||w|1 < Bi}.
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Bounding Rad,,(#)

Theorem . .
If H = {gw(x) : |lwlh < B4}, and S is a set of examples that lie in

{x €R?: |X[|oo < Roo}. Then Rads(H) < BiRoo/ 209

m
Proof.
m
Rads(H) = E, | sup W,Za,-x,-
W'HWH1<B1 :
= B;-E, Zax, ]
LIl i=1
d m
< B;-E, |max (maxZo,X,,,maxZa;(—X,-’j))
=1 =1 / i=1
L max over 2d rv’s, each mR?_-subgaussian
2In(2d .
< BiRs n(2d) (Massart's finite lemma) 8

m



Dual norms

Definition
Given a norm || - ||, and vector u € RY, define

Julls = sup (u,v)
vivli<1

to be the dual norm (|| - ||.) of u.
Example of dual norms:
* || - |lh has dual norm || - || oo

< || - |l has dual norm || - ||

-+ More generally, for p € [1,00], ||  [lp (Ixl|, == (=L, xi1”)?) has
norm || - ||q, where g is the conjugate exponent of p (% + % =1).



Proof of general ¢, /¢, margin bound (cont’d)

Step 3: putting everything together

- Step 2 = With probability 1— 4, for all w such that [jw||; < Bs:

4 In 4
Lo(w, D)—Lg(w, S) <41/”5 BW \/2'” ( \/%

- Step1 =
Lo(w, D) > Pp(y (w,x) < 0), and Lg(w,S) < Ps(y (w,x) < 6)

- Combining,

Pa(y<w7x>so>§Ps(y<w,x>ge)+o(&’;m 'm‘5> 0



Margin bounds for linear classifiers: ¢

What if our data satisfy other geometric constraints (intead of lying
in ¢, balls)?

Theorem (general ¢,/¢, margin bound)

Fix By, R, > 0, and margin 6 € (0, ByR,]. Suppose D is a distribution
over {x € RY: |[x|, < Ry} x {£1}. Then, with probability 1 — 6, for all
w € RY such that ||wl|, < By,

PD(y <WaX> < O) < Ps(y <W’X> < 9) +0 (BzoRz lnm;)

Proof sketch.
Same as the proof of ¢,/¢, bound, except that we now bound

Rads(#) by Bsz\/% (last lecture). O

1



Bound type ‘ Constraint on x ‘ Constraint on w ‘ Bound

b/loo IXlloo < Roo W < B | B(BiRooy/=1r)
b/t IXll2 < R, Wl <8 | O(B2Ro/ )

Incomparable in general:

- Suppose D is supported on {x: ||X|]s < Xo}, and we investigate
the generalization error bound of some w with [|wl||; < W,

77

- Idea 1: applying ¢1/¢ bound directly —- @(W1Xoo
- Idea 2: applying ¢,/¢; bound

s B=W

© Ry = VdXoo

* Bound: O(VdWiXoo /=)
- /€~ bound is is a factor of v/d better in this case

- Exercise: construct a setting when ¢, /¢, bound is a factor of Vvd
better than ¢;/¢, bound



Margin bounds for neural nets (Bartlett, Foster, Telgarsky, 2017)

Theorem 1.1. Let nonlinearities (o1, ...,01) and reference matrices (My,..., M) be given as above
(i.e., 0; is pi-Lipschitz and 0;(0) = 0). Then for (z,y), (z1,91),- - -, (Tn.Yn) drawn iid from any probability
distribution over R x {1,..., k}, with probability at least 1 — & over ((z:,y;))I-,, every margin v > 0

and network Fy : R — R with weight matrices A= (A, ..., Ap) satisfy

In(W) + _111(1/5)) s

Pr [argmaxF‘A(m)] # y} < ﬁW(FA) +0 (M
i n n

where Ry (f) < n= L [F(@2)y, < 7+ maxy ey, f(z1);] and [ X[z = /5, [i]-

Informally:

L . 1 1
F's generalization error < F's margin erroraty+ 0O | — P
~y

Normalized margin distribution is a reasonable indicator of
generalization performance for neural networks:

— difar
—— cifar random




Support vector machines: From bounds to algorithms

- Suppose D is realizable wrt H = {hy/(x) := sign({w,x)) : w € R?}
- Given S a set of iid m training examples from D, how to best pick
aw € RY such that Pp(y (w,x) < 0) is small?

- Idea: Fix 8 = 1, pick w such that Ps(y (w,x) < 1) =0, and ||w||, is
as small as possible

- Direction w, is “better” than wy, as it requires a smaller scaling
factor & > 0 to ensure Ps(y (aw,x) <1) =0

14



Support vector machines: From bounds to algorithms

This motivates the optimization problem:
min ||w||>
weRd
subject to: y; (w,x;) >1,Vie {1,...,m},
called the Support Vector Machine (SVM) problem. Remarks:

1. This is a convex optimization problem: convex objective
function, convex constraint set
2. Equivalently, the objective function can be replaced with 1||w||3

3. If we minimize ||w|, instead, this is called ¢-SVM problem



Convex optimization basics

- K'is said to be a convex set, if for every x,y € Kand « € (0,1),

ax+(1—a)y ek
(=) &

(o VUK et tnvvk

- fis said to be a convex function with domain C, if forall x,y € C,
and a € (0,1),

flax+ (1= a)y) < af(x) + (1 = a)f(y)

o\(/v)“’ﬁg )
§ Q&*‘H'/&\\D '
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Convex optimization basics (cont’d)

Optimization problems of the form:
min f{w)

subjectto: x e C

is said to be a convex optimization problem, if f and C are convex.
Convex optimization problems is a class of “easy” optimization
problems, which admits efficient solvers (e.g. CVXPY)



SVM: generalization properties

Corollary ‘ _ o
Fix R, > 0, and margin ~ € (0,R,]. D is a distribution, such that

1. itis supported on {x € R? : [|x[| < R, };
2. there exists a unit vector w* that satisfies Pp(y (w*,x) <) = 0.

Then, with probability 1 — & over the draw of training examples S, the
(¢,-)SVM solution W satisfies that:

~ Rz In %

<0)< =l =8,
Bo(y (@) <0) <O 5/
Proof sketch.

c W7 is a feasible solution of the SVM optimization problem —
Il < 1), = 2

- Use ¢,/¢, margin bound on W and 6 = 1. O



SVM: practical considerations

- In practice, data is rarely linearly separable
- Two general ways to cope with linear non-separability:

- Introducing nonlinear feature maps (basis functions)
- Modifying the SVM optimization problem by allowing some
examples to be incorrectly classified

19



SVM with nonlinear feature maps

- Define ¢ : RY — R, (xi,¥i) = (o(xi), i)

- W e RY <+ Solve SVM on (4(x:), )L,
- Final predictor: on x, predict h(x) = sign({W, #(x)))
- There are SVM solvers that has time complexity independent of

d’ and outputs a implicit representation of h, using the so-called
“kernel trick”

20



SVM with soft margins

- Introducing a “slack variable” & for each example i:

min 2 w2 +§m:g-
weRd 2 2 — :
subject to: yi (w,x;) >1—¢&,Vie{1,...,m},
& > O,VIE {1,...,/’7’7}
- Al = penalizes ¢ harder
- Try eliminating variable &;: for any fixed w, the optimal &; is such
that
rr%i_ng,-, SL&GZO0NEG=1—yi(w,X),
ie. & =max(0,1—y; (w,x)) =: (1—y; (W, x;))4; s0 soft-margin
SVM problem is equivalent to

) A
min §HW||% +Z(1 = Vi (W, Xi))+

weRd

complexity regularizer
empirical risk 21



Regularized loss minimization: general formulations

m
min o ARW) > Ufw(xi),vi)
complexity regularizer

empirical risk
Popular choices of:

< RW): Wi, W2, 2L, wi Inw; (negative entropy)
 fw(X): (w, x) (linear), (w,, o(W1x)) (one-hidden-layer network)
U, y):
- for regression: |§ — y|°,
- for classification: ¢(y - ), where ¢(z) can take e~* (boosting),
(1—2)+ (SYM), In(1 + e~?) (logistic regression), etc

22



What have we learned?

- Margin-based generalization error bounds for linear classifiers
+ l1/loo VS. £ /¢, bounds

- Using margin theory to guide the design of practical algorithms:
SVMs and regularized loss minimization

23



Why are large-margin distributions easy to learn? An alternative

perspective

cletX c {xeRI: x|, <1}

- Dis linearly separable over X x {£1} with margin v > 0, i.e.
there exists w*, such that ||w*||, <1 and with probability 1,

y(w*,x) > 1.

- SVM over m iid training examples == W, such that with high
probability,

0
Poly (,) < 0) < Ps(y xS 1)+ 0 <l ;})

- Recall: if % < d, this is much lower than VC-based
generalization error bound

24



Johnson-Lindenstrauss (J-L) Lemma

- A matrix A € R*9 can be viewed as a transformation ¢,
dp RIS R, x— Ax

| < d = dimensionality reduction
- Given D, let D, be the joint distribution of (Ax,y), where (x,y) ~ D

Lemma (Johnson-Lindenstrauss)

Given the setting as above; let | = O("’gw%). With high probability
over the draw of a random matrix A (from some fixed distribution),
the distribution D, is still linearly separable.

We call such matrix A a J-L transform.

25



Large-margin linear learner using J-L transform

Algorithm:

- Input: training examples S = ((x1,¥1), - - ., (Xm, Ym))

- Generate a random J-L transform A € R!xd

- Transformed training data Sx = ((Ax1,%1), - - -, (AXm, Ym))

- Use the consistency algorithm to find a classifier w € R!
consistent with Sy

- Return classifier h(x) = sign((W, Ax))

Analysis:

- By J-L, D, is linearly separable and W has zero training error on Su

- VCinequality = P y)~p, (v (W,2) <0) < O(\/%) =0 (% %)
- Finally, we recognize that

P(2)~0,(V (W, 2) < 0) = Py yyun(P(X) # ¥)

26



