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Introduction

In the boosting lecture, we saw:

Theorem
Suppose base class B is finite, C(B) =

{∑
h∈B αhh(x) :

∑
h∈B |αh| ≤ 1

}
is the set of voting classifiers over B. Fix margin θ ∈ [0, 1]. Then, for
any distribution D, with probability 1− δ, for all f ∈ C(B),

PD(yf(x) ≤ 0) ≤ PS(yf(x) ≤ θ)︸ ︷︷ ︸
“Margin error” of f

+O

 1
θ

√
ln |B|

δ

m


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Overview of this lecture

Questions:

• Can we develop some geometric intuition on this result?
• Can we generalize this result to analyze other large-margin
classifiers?

• How can we prove this result?
• Can we use the insights obtained to design practical algorithms?
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A geometric interpretation of boosting’s margin bound

• Let B = {h1, . . . ,hd}
• For every x, define its corresponding z = (h1(x), . . . ,hd(x))
• Any element in C(B), fα(x) =

∑d
i=1 αihi(x) can be alternatively

written as gα(z) = 〈α, z〉

Theorem (Restated version)
Fix margin θ ∈ [0, 1]. Then, for any distribution D, with probability
1− δ, for all α such that ‖α‖1 ≤ 1,

PD(y 〈α, z〉 ≤ 0) ≤ PS(y 〈α, z〉 ≤ θ)︸ ︷︷ ︸
“Margin error” of gα(z) = ⟨α, z⟩

+O

 1
θ

√
ln d

δ

m


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Margin bounds for linear classifiers: general ℓ1/ℓ∞ version

Theorem (general ℓ1/ℓ∞ margin bound)
Fix B1,R∞ > 0, and margin θ ∈ (0,B1R∞]. Suppose D is a distribution
over

{
x ∈ Rd : ‖x‖∞ ≤ R∞

}
× {±1}. Then, with probability 1− δ, for

all w ∈ Rd such that ‖w‖1 ≤ B1,

PD(y 〈w, x〉 ≤ 0) ≤ PS(y 〈w, x〉 ≤ θ) + O

B1R∞
θ

√
ln d

δ

m



Remarks:

• Larger θ =⇒ smaller “generalization gap” term

• The bound is almost-dimension free, cf. VC theory (O(
√

d
m ) term)

• Scale-invariance: scaling w and θ by the same factor (e.g. 10)
results in the same bound
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Margin error in linear classification: an illustration

• PS(y 〈w, x〉 ≤ 0) = 2/10
• PS(y 〈w, x〉 ≤ θ) = 4/10
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Proof of general ℓ1/ℓ∞ margin bound

Step 1: Bridging 0-1 error and margin error using the “ramp-loss”
ℓθ(w, (x, y)) = ϕθ(y 〈w, x〉), where

ϕθ(z) =


1, z ≤ 0
1− z

θ , 0 ≤ z ≤ θ

0, z ≥ θ,

observe:
1. ϕθ is 1

θ
-Lipschitz

2. I(z ≤ 0) ≤ ϕθ(z) ≤ I(z ≤ θ), therefore:

Lθ(w,D) = ED [ℓθ(w, (x, y))] ≥ PD(y ⟨w, x⟩ ≤ 0),

Lθ(w, S) = ES [ℓθ(w, (x, y))] ≤ PS(y ⟨w, x⟩ ≤ θ).

Are Lθ(w, S) and Lθ(w,D) close?
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Proof of general ℓ1/ℓ∞ margin bound (cont’d)

Step 2: Uniform concentration between Lθ(w, S) and Lθ(w,D)
1. Last lecture =⇒ With probability 1− δ, for all w such that

∥w∥1 ≤ B1:

|Lθ(w, S)− Lθ(w,D)| ≤ 4

√
ln 4

δ

2m + 4Radm(F),

where F = {ℓθ(w, (x, y)) : ∥w∥1 ≤ B1}
2. Bounding Radm(F):

Radm(F) =
1
mEσ

[
sup

w:∥w∥1≤B1

m∑
i=1

σiϕθ(yi ⟨w, xi⟩)
]

≤ 1
θ
· 1mEσ

[
sup

w:∥w∥1≤B1

m∑
i=1

σiyi ⟨w, xi⟩
]
(Contraction ineq.)

=
1
θ
Radm(H),

where H = {gw(x) := ⟨w, x⟩ : ∥w∥1 ≤ B1}.
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Bounding Radm(H)

Theorem
If H = {gw(x) : ‖w‖1 ≤ B1}, and S is a set of examples that lie in{
x ∈ Rd : ‖x‖∞ ≤ R∞

}
. Then RadS(H) ≤ B1R∞

√
2 ln(2d)
m .

Proof.

RadS(H) = Eσ

[
sup

w:∥w∥1≤B1

〈
w,

m∑
i=1

σixi

〉]

= B1 · Eσ

[∥∥∥∥∥
m∑
i=1

σixi

∥∥∥∥∥
∞

]

≤ B1 · Eσ

max

(
d

max
j=1

m∑
i=1

σixi,j,
d

max
j=1

m∑
i=1

σi(−xi,j)
)

︸ ︷︷ ︸
max over 2d r.v.’s, each mR2∞-subgaussian


≤ B1R∞

√
2 ln(2d)
m (Massart’s finite lemma) 8



Dual norms

Definition
Given a norm ‖ · ‖, and vector u ∈ Rd, define

‖u‖⋆ = sup
v:∥v∥≤1

〈u, v〉

to be the dual norm (‖ · ‖⋆) of u.

Example of dual norms:

• ‖ · ‖1 has dual norm ‖ · ‖∞
• ‖ · ‖2 has dual norm ‖ · ‖2
• More generally, for p ∈ [1,∞], ‖ · ‖p (‖x‖p := (

∑d
i=1 |xi|

p)
1
p ) has

norm ‖ · ‖q, where q is the conjugate exponent of p ( 1p + 1
q = 1).
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Proof of general ℓ1/ℓ∞ margin bound (cont’d)

Step 3: putting everything together

• Step 2 =⇒ With probability 1− δ, for all w such that ‖w‖1 ≤ B1:

Lθ(w,D)−Lθ(w, S) ≤ 4

√
ln 4

δ

2m+4B1R∞
θ

√
2 ln(2d)
m = O

B1R∞
θ

√
ln d

δ

m


• Step 1 =⇒
Lθ(w,D) ≥ PD(y 〈w, x〉 ≤ 0), and Lθ(w, S) ≤ PS(y 〈w, x〉 ≤ θ)

• Combining,

PD(y 〈w, x〉 ≤ 0) ≤ PS(y 〈w, x〉 ≤ θ) + O

B1R∞
θ

√
ln d

δ

m

 .
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Margin bounds for linear classifiers: ℓ2/ℓ2 version

What if our data satisfy other geometric constraints (intead of lying
in ℓ∞ balls)?

Theorem (general ℓ2/ℓ2 margin bound)
Fix B2,R2 > 0, and margin θ ∈ (0,B2R2]. Suppose D is a distribution
over

{
x ∈ Rd : ‖x‖2 ≤ R2

}
× {±1}. Then, with probability 1− δ, for all

w ∈ Rd such that ‖w‖2 ≤ B2,

PD(y 〈w, x〉 ≤ 0) ≤ PS(y 〈w, x〉 ≤ θ) + O

B2R2
θ

√
ln 1

δ

m



Proof sketch.
Same as the proof of ℓ1/ℓ∞ bound, except that we now bound
RadS(H) by B2R2

√
1
m (last lecture).
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ℓ1/ℓ∞ vs. ℓ2/ℓ2 bounds

Bound type Constraint on x Constraint on w Bound
ℓ1/ℓ∞ ‖x‖∞ ≤ R∞ ‖w‖1 ≤ B1 Õ(B1R∞

√
1

mθ2 )

ℓ2/ℓ2 ‖x‖2 ≤ R2 ‖w‖2 ≤ B2 Õ(B2R2
√

1
mθ2 )

Incomparable in general:

• Suppose D is supported on {x : ‖x‖∞ ≤ X∞}, and we investigate
the generalization error bound of some w with ‖w‖1 ≤ W1

• Idea 1: applying ℓ1/ℓ∞ bound directly =⇒ Õ(W1X∞
√

1
mθ2 )

• Idea 2: applying ℓ2/ℓ2 bound
• B2 = W1
• R2 =

√
dX∞

• Bound: Õ(
√
dW1X∞

√
1

mθ2
)

• ℓ1/ℓ∞ bound is is a factor of
√
d better in this case

• Exercise: construct a setting when ℓ2/ℓ2 bound is a factor of
√
d

better than ℓ1/ℓ∞ bound
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Margin bounds for neural nets (Bartlett, Foster, Telgarsky, 2017)

Informally:

F’s generalization error ≤ F’s margin error at γ + O
(
1
γ

√
1
m

)
Normalized margin distribution is a reasonable indicator of
generalization performance for neural networks:
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Support vector machines: From bounds to algorithms

• Suppose D is realizable wrt H =
{
hw(x) := sign(〈w, x〉) : w ∈ Rd}

• Given S a set of iid m training examples from D, how to best pick
a w ∈ Rd such that PD(y 〈w, x〉 ≤ 0) is small?

• Idea: Fix θ = 1, pick w such that PS(y 〈w, x〉 ≤ 1) = 0, and ‖w‖2 is
as small as possible

• Direction w2 is “better” than w1, as it requires a smaller scaling
factor α > 0 to ensure PS(y 〈αw, x〉 ≤ 1) = 0
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Support vector machines: From bounds to algorithms

This motivates the optimization problem:

min
w∈Rd
‖w‖2

subject to: yi 〈w, xi〉 ≥ 1, ∀i ∈ {1, . . . ,m} ,

called the Support Vector Machine (SVM) problem. Remarks:

1. This is a convex optimization problem: convex objective
function, convex constraint set

2. Equivalently, the objective function can be replaced with 1
2‖w‖

2
2

3. If we minimize ‖w‖1 instead, this is called ℓ1-SVM problem
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Convex optimization basics

• K is said to be a convex set, if for every x, y ∈ K and α ∈ (0, 1),
αx+ (1− α)y ∈ K

• f is said to be a convex function with domain C, if for all x, y ∈ C,
and α ∈ (0, 1),

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y)
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Convex optimization basics (cont’d)

Optimization problems of the form:

min
x∈Rd

f(w)

subject to: x ∈ C

is said to be a convex optimization problem, if f and C are convex.
Convex optimization problems is a class of “easy” optimization
problems, which admits efficient solvers (e.g. CVXPY)
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SVM: generalization properties

Corollary
Fix R2 > 0, and margin γ ∈ (0,R2]. D is a distribution, such that

1. it is supported on
{
x ∈ Rd : ‖x‖2 ≤ R2

}
;

2. there exists a unit vector w∗ that satisfies PD(y 〈w∗, x〉 ≤ γ) = 0.

Then, with probability 1− δ over the draw of training examples S, the
(ℓ2-)SVM solution ŵ satisfies that:

PD(y 〈ŵ, x〉 ≤ 0) ≤ O

R2
γ

√
ln 1

δ

m


Proof sketch.

• w∗

γ is a feasible solution of the SVM optimization problem =⇒
‖ŵ‖2 ≤ ‖w

∗

γ ‖2 =
1
γ

• Use ℓ2/ℓ2 margin bound on ŵ and θ = 1.
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SVM: practical considerations

• In practice, data is rarely linearly separable
• Two general ways to cope with linear non-separability:

• Introducing nonlinear feature maps (basis functions)
• Modifying the SVM optimization problem by allowing some
examples to be incorrectly classified
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SVM with nonlinear feature maps

• Define ϕ : Rd → Rd′ , (xi, yi)→ (ϕ(xi), yi)

• ŵ ∈ Rd′ ← Solve SVM on (ϕ(xi), yi)d
′

i=1

• Final predictor: on x, predict ĥ(x) = sign(〈ŵ, ϕ(x)〉)
• There are SVM solvers that has time complexity independent of
d′ and outputs a implicit representation of ĥ, using the so-called
“kernel trick”
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SVM with soft margins

• Introducing a “slack variable” ξi for each example i:

min
w∈Rd

λ

2 ‖w‖
2
2 +

m∑
i=1

ξi

subject to: yi 〈w, xi〉 ≥ 1− ξi, ∀i ∈ {1, . . . ,m} ,
ξi ≥ 0, ∀i ∈ {1, . . . ,m}

• λ ↓ =⇒ penalizes ξi harder
• Try eliminating variable ξi: for any fixed w, the optimal ξi is such
that

min
ξi

ξi, s.t. ξi ≥ 0 ∧ ξi ≥ 1− yi 〈w, xi〉 ,

i.e. ξi = max(0, 1− yi 〈w, xi〉) =: (1− yi 〈w, xi〉)+; so soft-margin
SVM problem is equivalent to

min
w∈Rd

λ

2 ‖w‖
2
2︸ ︷︷ ︸

complexity regularizer

+
m∑
i=1

(1− yi 〈w, xi〉)+︸ ︷︷ ︸
empirical risk 21



Regularized loss minimization: general formulations

min
w∈Rd

λ · R(w)︸ ︷︷ ︸
complexity regularizer

+
m∑
i=1

ℓ(fw(xi), yi)︸ ︷︷ ︸
empirical risk

Popular choices of:

• R(w): ‖w‖1, ‖w‖22,
∑d

i=1 wi lnwi (negative entropy)
• fw(x): 〈w, x〉 (linear), 〈w2, σ(W1x)〉 (one-hidden-layer network)
• ℓ(ŷ, y):

• for regression: |ŷ− y|p,
• for classification: ϕ(y · ŷ), where ϕ(z) can take e−z (boosting),
(1− z)+ (SVM), ln(1+ e−z) (logistic regression), etc
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What have we learned?

• Margin-based generalization error bounds for linear classifiers
• ℓ1/ℓ∞ vs. ℓ2/ℓ2 bounds
• Using margin theory to guide the design of practical algorithms:
SVMs and regularized loss minimization
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Why are large-margin distributions easy to learn? An alternative
perspective

• Let X ⊂
{
x ∈ Rd : ‖x‖2 ≤ 1

}
• D is linearly separable over X × {±1} with margin γ > 0, i.e.
there exists w∗, such that ‖w∗‖2 ≤ 1 and with probability 1,

y 〈w∗, x〉 ≥ γ.

• SVM over m iid training examples =⇒ ŵ, such that with high
probability,

PD(y 〈ŵ, x〉 ≤ 0) ≤��������:0
PS(y 〈ŵ, x〉 ≤ 1) + O

(
1
γ

√
1
m

)

• Recall: if 1
γ2 � d, this is much lower than VC-based

generalization error bound
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Johnson-Lindenstrauss (J-L) Lemma

• A matrix A ∈ Rl×d can be viewed as a transformation ϕA,

ϕA : Rd → Rl, x 7→ Ax

l� d =⇒ dimensionality reduction
• Given D, let DA be the joint distribution of (Ax, y), where (x, y) ∼ D

Lemma (Johnson-Lindenstrauss)
Given the setting as above; let l = O( log |X |

γ2 ). With high probability
over the draw of a random matrix A (from some fixed distribution),
the distribution DA is still linearly separable.

We call such matrix A a J-L transform.
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Large-margin linear learner using J-L transform

Algorithm:

• Input: training examples S = 〈(x1, y1), . . . , (xm, ym)〉
• Generate a random J-L transform A ∈ Rl×d

• Transformed training data SA = 〈(Ax1, y1), . . . , (Axm, ym)〉
• Use the consistency algorithm to find a classifier ŵ ∈ Rl

consistent with SA
• Return classifier ĥ(x) = sign(〈ŵ,Ax〉)

Analysis:

• By J-L, DA is linearly separable and ŵ has zero training error on SA
• VC inequality =⇒ P(z,y)∼DA(y 〈ŵ, z〉 ≤ 0) ≤ O(

√
l
m ) = O

(
1
γ

√
1
m

)
• Finally, we recognize that

P(z,y)∼DA(y 〈ŵ, z〉 ≤ 0) = P(x,y)∼D(ĥ(x) 6= y)
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