Margin-based generalization error bounds for classification

Chicheng Zhang

CSC 588, University of Arizona

Introduction

In the boosting lecture, we saw:

Theorem

Suppose base class \mathcal{B} is finite, $\mathcal{C}(\mathcal{B}) = \left\{ \sum_{h \in \mathcal{B}} \alpha_h h(x) : \sum_{h \in \mathcal{B}} |\alpha_h| \le 1 \right\}$ is the set of voting classifiers over \mathcal{B} . Fix margin $\theta \in [0, 1]$. Then, for any distribution D, with probability $1 - \delta$, for all $f \in \mathcal{C}(\mathcal{B})$,

$$\mathbb{P}_{D}(yf(x) \leq 0) \leq \underbrace{\mathbb{P}_{S}(yf(x) \leq \theta)}_{"Margin \ error" \ of \ f} + O\left(\frac{1}{\theta}\sqrt{\frac{\ln \frac{|\mathcal{B}|}{\delta}}{m}}\right)$$

Questions:

- Can we develop some geometric intuition on this result?
- Can we generalize this result to analyze other large-margin classifiers?
- How can we prove this result?
- Can we use the insights obtained to design practical algorithms?

A geometric interpretation of boosting's margin bound

- Let $\mathcal{B} = \{h_1, \dots, h_d\}$
- For every x, define its corresponding $z = (h_1(x), \ldots, h_d(x))$
- Any element in $C(\mathcal{B})$, $f_{\alpha}(x) = \sum_{i=1}^{d} \alpha_i h_i(x)$ can be alternatively written as $g_{\alpha}(z) = \langle \alpha, z \rangle$

Theorem (Restated version)

Fix margin $\theta \in [0, 1]$. Then, for any distribution D, with probability $1 - \delta$, for all α such that $||\alpha||_1 \le 1$,

$$\mathbb{P}_{D}(y \langle \alpha, z \rangle \leq 0) \leq \underbrace{\mathbb{P}_{S}(y \langle \alpha, z \rangle \leq \theta)}_{\text{"Margin error" of } g_{\alpha}(z) = \langle \alpha, z \rangle} + O\left(\frac{1}{\theta} \sqrt{\frac{\ln \frac{d}{\delta}}{m}}\right)$$

Margin bounds for linear classifiers: general ℓ_1/ℓ_∞ version

Theorem (general ℓ_1/ℓ_∞ margin bound)

Fix $B_1, R_\infty > 0$, and margin $\theta \in (0, B_1 R_\infty]$. Suppose D is a distribution over $\{x \in \mathbb{R}^d : ||x||_\infty \le R_\infty\} \times \{\pm 1\}$. Then, with probability $1 - \delta$, for all $w \in \mathbb{R}^d$ such that $||w||_1 \le B_1$,

$$\mathbb{P}_{D}(y \langle w, x \rangle \leq 0) \leq \mathbb{P}_{S}(y \langle w, x \rangle \leq \theta) + O\left(\frac{B_{1}R_{\infty}}{\theta}\sqrt{\frac{\ln \frac{d}{\delta}}{m}}\right)$$

Remarks:

- \cdot Larger $\theta \implies$ smaller "generalization gap" term
- The bound is almost-dimension free, cf. VC theory $(O(\sqrt{\frac{d}{m}}) \text{ term})$
- Scale-invariance: scaling w and θ by the same factor (e.g. 10) results in the same bound

Margin error in linear classification: an illustration

- $\mathbb{P}_{S}(y\langle w, x \rangle \leq 0) = 2/10$
- $\mathbb{P}_{S}(y\langle w, x \rangle \leq \theta) = 4/10$

Proof of general ℓ_1/ℓ_∞ margin bound

Step 1: Bridging 0-1 error and margin error using the "ramp-loss" $\ell_{\theta}(w, (x, y)) = \phi_{\theta}(y \langle w, x \rangle)$, where

$$\phi_{\theta}(z) = \begin{cases} 1, & z \leq 0\\ 1 - \frac{z}{\theta}, & 0 \leq z \leq \theta\\ 0, & z \geq \theta, \end{cases}$$

observe:

1.
$$\phi_{\theta}$$
 is $\frac{1}{\theta}$ -Lipschitz
2. $l(z \le 0) \le \phi_{\theta}(z) \le l(z \le \theta)$, therefore:

 $L_{\theta}(w, D) = \mathbb{E}_{D} \left[\ell_{\theta}(w, (x, y)) \right] \ge \mathbb{P}_{D}(y \langle w, x \rangle \le 0),$ $L_{\theta}(w, S) = \mathbb{E}_{S} \left[\ell_{\theta}(w, (x, y)) \right] \le \mathbb{P}_{S}(y \langle w, x \rangle \le \theta).$

Are $L_{\theta}(w, S)$ and $L_{\theta}(w, D)$ close?

Proof of general ℓ_1/ℓ_∞ margin bound (cont'd)

Step 2: Uniform concentration between $L_{\theta}(w, S)$ and $L_{\theta}(w, D)$

1. Last lecture \implies With probability $1 - \delta$, for all w such that $||w||_1 \le B_1$:

$$|L_{\theta}(w,S) - L_{\theta}(w,D)| \leq 4\sqrt{\frac{\ln \frac{4}{\delta}}{2m}} + 4\operatorname{Rad}_{m}(\mathcal{F}),$$

where $\mathcal{F} = \{\ell_{\theta}(w, (x, y)) : ||w||_1 \le B_1\}$

2. Bounding $\operatorname{Rad}_m(\mathcal{F})$:

$$\begin{aligned} \mathsf{Rad}_{m}(\mathcal{F}) &= \frac{1}{m} \mathbb{E}_{\sigma} \left[\sup_{\substack{\mathsf{w}: \|\mathbf{w}\|_{1} \leq B_{1}}} \sum_{i=1}^{m} \sigma_{i} \phi_{\theta}(\mathbf{y}_{i} \langle \mathbf{w}, \mathbf{x}_{i} \rangle) \right] \\ &\leq \frac{1}{\theta} \cdot \frac{1}{m} \mathbb{E}_{\sigma} \left[\sup_{\substack{\mathsf{w}: \|\mathbf{w}\|_{1} \leq B_{1}}} \sum_{i=1}^{m} \sigma_{i} \mathbf{y}_{i} \langle \mathbf{w}, \mathbf{x}_{i} \rangle \right] \end{aligned}$$
(Contraction ineq.)
$$&= \frac{1}{\theta} \mathsf{Rad}_{m}(\mathcal{H}), \end{aligned}$$

where $\mathcal{H} = \{g_w(x) := \langle w, x \rangle : \|w\|_1 \leq B_1\}.$

Bounding $\operatorname{Rad}_m(\mathcal{H})$

Theorem

F

If $\mathcal{H} = \{g_w(x) : \|w\|_1 \le B_1\}$, and S is a set of examples that lie in $\{x \in \mathbb{R}^d : \|x\|_{\infty} \le R_{\infty}\}$. Then $\operatorname{Rad}_S(\mathcal{H}) \le B_1 R_{\infty} \sqrt{\frac{2\ln(2d)}{m}}$. **Proof.**

$$\begin{aligned} \operatorname{Rad}_{S}(\mathcal{H}) &= \mathbb{E}_{\sigma} \left[\sup_{w: \|w\|_{1} \leq B_{1}} \left\langle w, \sum_{i=1}^{m} \sigma_{i} x_{i} \right\rangle \right] \\ &= B_{1} \cdot \mathbb{E}_{\sigma} \left[\left\| \sum_{i=1}^{m} \sigma_{i} x_{i} \right\|_{\infty} \right] \\ &\leq B_{1} \cdot \mathbb{E}_{\sigma} \left[\underbrace{\max \left(\max_{j=1}^{d} \sum_{i=1}^{m} \sigma_{i} x_{i,j}, \max_{j=1}^{m} \sum_{i=1}^{m} \sigma_{i} (-x_{i,j}) \right)}_{\operatorname{max over 2d rv's, each } mR_{\infty}^{2} - \operatorname{subgaussian}} \right] \\ &\leq B_{1} R_{\infty} \sqrt{\frac{2 \ln(2d)}{m}} \quad (\operatorname{Massart's finite lemma}) \end{aligned}$$

Definition Given a norm $\|\cdot\|$, and vector $u \in \mathbb{R}^d$, define

$$\|u\|_{\star} = \sup_{v:\|v\| \le 1} \langle u, v \rangle$$

to be the dual norm $(\|\cdot\|_*)$ of u.

Example of dual norms:

- $\boldsymbol{\cdot} ~ \| \cdot \|_1$ has dual norm $\| \cdot \|_\infty$
- $\boldsymbol{\cdot} \ \| \boldsymbol{\cdot} \|_2$ has dual norm $\| \boldsymbol{\cdot} \|_2$
- More generally, for $p \in [1, \infty]$, $\|\cdot\|_p (\|x\|_p := (\sum_{i=1}^d |x_i|^p)^{\frac{1}{p}})$ has norm $\|\cdot\|_q$, where q is the conjugate exponent of $p(\frac{1}{p} + \frac{1}{q} = 1)$.

Proof of general ℓ_1/ℓ_∞ margin bound (cont'd)

Step 3: putting everything together

• Step 2 \implies With probability $1 - \delta$, for all w such that $||w||_1 \le B_1$:

$$L_{\theta}(w, D) - L_{\theta}(w, S) \le 4\sqrt{\frac{\ln\frac{4}{\delta}}{2m}} + 4\frac{B_1R_{\infty}}{\theta}\sqrt{\frac{2\ln(2d)}{m}} = O\left(\frac{B_1R_{\infty}}{\theta}\sqrt{\frac{\ln\frac{d}{\delta}}{m}}\right)$$

- Step 1 \implies $L_{\theta}(w, D) \ge \mathbb{P}_{D}(y \langle w, x \rangle \le 0)$, and $L_{\theta}(w, S) \le \mathbb{P}_{S}(y \langle w, x \rangle \le \theta)$
- Combining,

$$\mathbb{P}_{D}(y\langle w, x\rangle \leq 0) \leq \mathbb{P}_{S}(y\langle w, x\rangle \leq \theta) + O\left(\frac{B_{1}R_{\infty}}{\theta}\sqrt{\frac{\ln\frac{d}{\delta}}{m}}\right). \quad \Box$$

What if our data satisfy other geometric constraints (intead of lying in ℓ_∞ balls)?

Theorem (general ℓ_2/ℓ_2 margin bound) Fix $B_2, R_2 > 0$, and margin $\theta \in (0, B_2R_2]$. Suppose D is a distribution over $\{x \in \mathbb{R}^d : ||x||_2 \le R_2\} \times \{\pm 1\}$. Then, with probability $1 - \delta$, for all $w \in \mathbb{R}^d$ such that $||w||_2 \le B_2$,

$$\mathbb{P}_{D}(y\langle w, x\rangle \leq 0) \leq \mathbb{P}_{S}(y\langle w, x\rangle \leq \theta) + O\left(\frac{B_{2}R_{2}}{\theta}\sqrt{\frac{\ln\frac{1}{\delta}}{m}}\right)$$

Proof sketch.

Same as the proof of ℓ_1/ℓ_{∞} bound, except that we now bound $\operatorname{Rad}_{S}(\mathcal{H})$ by $B_2R_2\sqrt{\frac{1}{m}}$ (last lecture).

ℓ_1/ℓ_∞ vs. ℓ_2/ℓ_2 bounds

Bound type	Constraint on x	Constraint on w	Bound
ℓ_1/ℓ_∞	$\ x\ _{\infty} \leq R_{\infty}$	$\ w\ _1 \leq B_1$	$\tilde{O}(B_1 R_{\infty} \sqrt{\frac{1}{m\theta^2}})$
ℓ_2/ℓ_2	$\ x\ _2 \le R_2$	$\ w\ _2 \le B_2$	$\tilde{O}(B_2R_2\sqrt{\frac{1}{m\theta^2}})$
Incomparable in general:			

- Suppose *D* is supported on $\{x : ||x||_{\infty} \le X_{\infty}\}$, and we investigate the generalization error bound of some *w* with $||w||_1 \le W_1$
 - Idea 1: applying ℓ_1/ℓ_{∞} bound directly $\implies \tilde{O}(W_1X_{\infty}\sqrt{\frac{1}{m\theta^2}})$
 - + Idea 2: applying ℓ_2/ℓ_2 bound

•
$$B_2 = W_1$$

$$\cdot R_2 = \sqrt{d}X_{\infty}$$

- Bound: $\tilde{O}(\sqrt{d}W_1X_{\infty}\sqrt{\frac{1}{m\theta^2}})$
- + ℓ_1/ℓ_∞ bound is is a factor of \sqrt{d} better in this case
- Exercise: construct a setting when ℓ_2/ℓ_2 bound is a factor of \sqrt{d} better than ℓ_1/ℓ_∞ bound

Margin bounds for neural nets (Bartlett, Foster, Telgarsky, 2017)

Theorem 1.1. Let nonlinearities $(\sigma_1, ..., \sigma_L)$ and reference matrices $(M_1, ..., M_L)$ be given as above $(i.e., \sigma_i \text{ is } \rho_i\text{-Lipschitz} \text{ and } \sigma_i(0) = 0)$. Then for $(x, y), (x_1, y_1), ..., (x_n, y_n)$ drawn iid from any probability distribution over $\mathbb{R}^d \times \{1, ..., k\}$, with probability at least $1 - \delta$ over $((x_i, y_i))_{i=1}^n$, every margin $\gamma > 0$ and network $F_A : \mathbb{R}^d \to \mathbb{R}^k$ with weight matrices $A = (A_1, ..., A_L)$ satisfy

$$\begin{split} &\Pr\left[\arg\max_{j}F_{\mathcal{A}}(x)_{j}\neq y\right]\leq\widehat{\mathcal{R}}_{\gamma}(F_{\mathcal{A}})+\widetilde{\mathcal{O}}\left(\frac{\|X\|_{2}R_{\mathcal{A}}}{\gamma n}\ln(W)+\sqrt{\frac{\ln(1/\delta)}{n}}\right),\\ & \text{where }\widehat{\mathcal{R}}_{\gamma}(f)\leq n^{-1}\sum_{i}\mathbbm{1}\left[f(x_{i})_{y_{i}}\leq\gamma+\max_{j\neq y_{i}}f(x_{i})_{j}\right]\text{ and }\|X\|_{2}=\sqrt{\sum_{i}\|x_{i}\|_{2}^{2}}. \end{split}$$

Informally:

F's generalization error
$$\leq$$
 F's margin error at $\gamma + O\left(\frac{1}{\gamma}\sqrt{\frac{1}{m}}\right)$

Normalized margin distribution is a reasonable indicator of generalization performance for neural networks:

Support vector machines: From bounds to algorithms

- Suppose *D* is realizable wrt $\mathcal{H} = \{h_w(x) := sign(\langle w, x \rangle) : w \in \mathbb{R}^d\}$
- Given S a set of iid *m* training examples from *D*, how to best pick a $w \in \mathbb{R}^d$ such that $\mathbb{P}_D(y \langle w, x \rangle \leq 0)$ is small?

- Idea: Fix $\theta = 1$, pick w such that $\mathbb{P}_{S}(y \langle w, x \rangle \leq 1) = 0$, and $||w||_{2}$ is as small as possible
- Direction w_2 is "better" than w_1 , as it requires a smaller scaling factor $\alpha > 0$ to ensure $\mathbb{P}_S(y \langle \alpha w, x \rangle \leq 1) = 0$

This motivates the optimization problem:

$$\min_{w \in \mathbb{R}^d} \|w\|_2$$

subject to: $y_i \langle w, x_i \rangle \ge 1, \forall i \in \{1, \dots, m\}$

called the Support Vector Machine (SVM) problem. Remarks:

- 1. This is a convex optimization problem: convex objective function, convex constraint set
- 2. Equivalently, the objective function can be replaced with $\frac{1}{2} ||w||_2^2$
- 3. If we minimize $||w||_1$ instead, this is called ℓ_1 -SVM problem

Convex optimization basics

• *K* is said to be a convex set, if for every $x, y \in K$ and $\alpha \in (0, 1)$, $\alpha x + (1 - \alpha)y \in K$

• *f* is said to be a convex function with domain *C*, if for all $x, y \in C$, and $\alpha \in (0, 1)$,

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$$

Optimization problems of the form:

 $\min_{x \in \mathbb{R}^d} f(w)$
subject to: $x \in C$

is said to be a convex optimization problem, if *f* and *C* are convex. Convex optimization problems is a class of "easy" optimization problems, which admits efficient solvers (e.g. CVXPY)

SVM: generalization properties

Corollary

Fix $R_2 > 0$, and margin $\gamma \in (0, R_2]$. D is a distribution, such that

- 1. it is supported on $\{x \in \mathbb{R}^d : \|x\|_2 \le R_2\};$
- 2. there exists a unit vector w^* that satisfies $\mathbb{P}_D(y \langle w^*, x \rangle \leq \gamma) = 0$.

Then, with probability 1 – δ over the draw of training examples S, the (ℓ_2 -)SVM solution \hat{w} satisfies that:

$$\mathbb{P}_{D}(y\langle \hat{w}, x\rangle \leq 0) \leq O\left(\frac{R_{2}}{\gamma}\sqrt{\frac{\ln\frac{1}{\delta}}{m}}\right)$$

Proof sketch.

- $\frac{w^*}{\gamma}$ is a feasible solution of the SVM optimization problem \implies $\|\hat{w}\|_2 \le \|\frac{w^*}{\gamma}\|_2 = \frac{1}{\gamma}$
- Use ℓ_2/ℓ_2 margin bound on \hat{w} and $\theta = 1$.

- In practice, data is rarely linearly separable
- Two general ways to cope with linear non-separability:
 - Introducing nonlinear feature maps (basis functions)
 - Modifying the SVM optimization problem by allowing some examples to be incorrectly classified

SVM with nonlinear feature maps

• Define $\phi : \mathbb{R}^d \to \mathbb{R}^{d'}$, $(x_i, y_i) \to (\phi(x_i), y_i)$

- $\hat{w} \in \mathbb{R}^{d'} \leftarrow \text{Solve SVM on } (\phi(x_i), y_i)_{i=1}^{d'}$
- Final predictor: on x, predict $\hat{h}(x) = \operatorname{sign}(\langle \hat{w}, \phi(x) \rangle)$
- There are SVM solvers that has time complexity independent of d' and outputs a implicit representation of \hat{h} , using the so-called "kernel trick"

SVM with soft margins

• Introducing a "slack variable" ξ_i for each example *i*:

$$\begin{split} \min_{w \in \mathbb{R}^d} &\frac{\lambda}{2} \|w\|_2^2 + \sum_{i=1}^m \xi_i \\ \text{subject to: } y_i \langle w, x_i \rangle \geq 1 - \xi_i, \forall i \in \{1, \dots, m\}, \\ &\xi_i \geq 0, \forall i \in \{1, \dots, m\} \end{split}$$

- $\cdot \lambda \downarrow \Longrightarrow$ penalizes ξ_i harder
- Try eliminating variable ξ_i : for any fixed *w*, the optimal ξ_i is such that

$$\min_{\xi_i} \xi_i, \text{ s.t. } \xi_i \geq 0 \land \xi_i \geq 1 - y_i \left< w, x_i \right>,$$

i.e. $\xi_i = \max(0, 1 - y_i \langle w, x_i \rangle) =: (1 - y_i \langle w, x_i \rangle)_+$; so soft-margin SVM problem is equivalent to

$$\min_{W \in \mathbb{R}^{d}} \underbrace{\frac{\lambda}{2} \|W\|_{2}^{2}}_{\text{complexity regularizer}} + \underbrace{\sum_{i=1}^{m} (1 - y_{i} \langle W, X_{i} \rangle)_{+}}_{\text{empirical risk}}$$

Regularized loss minimization: general formulations

Popular choices of:

- R(w): $||w||_1$, $||w||_2^2$, $\sum_{i=1}^d w_i \ln w_i$ (negative entropy)
- $f_{W}(x)$: $\langle W, x \rangle$ (linear), $\langle W_{2}, \sigma(W_{1}x) \rangle$ (one-hidden-layer network)
- · $\ell(\hat{y}, y)$:
 - for regression: $|\hat{y} y|^p$,
 - for classification: $\phi(y \cdot \hat{y})$, where $\phi(z)$ can take e^{-z} (boosting), $(1-z)_+$ (SVM), $\ln(1+e^{-z})$ (logistic regression), etc

- Margin-based generalization error bounds for linear classifiers
- + ℓ_1/ℓ_∞ vs. ℓ_2/ℓ_2 bounds
- Using margin theory to guide the design of practical algorithms: SVMs and regularized loss minimization

Why are large-margin distributions easy to learn? An alternative perspective

- Let $\mathcal{X} \subset \left\{ x \in \mathbb{R}^d : \|x\|_2 \le 1 \right\}$
- *D* is linearly separable over $\mathcal{X} \times \{\pm 1\}$ with margin $\gamma > 0$, i.e. there exists w^* , such that $||w^*||_2 \le 1$ and with probability 1,

$$y\langle w^*,x\rangle \geq \gamma.$$

• SVM over *m* iid training examples $\implies \hat{w}$, such that with high probability,

$$\mathbb{P}_{D}(y\langle \hat{w}, x\rangle \leq 0) \leq \mathbb{P}_{S}(y\langle \hat{w}, x\rangle \leq 1) + O\left(\frac{1}{\gamma}\sqrt{\frac{1}{m}}\right)$$

• Recall: if $\frac{1}{\gamma^2} \ll d$, this is much lower than VC-based generalization error bound

• A matrix $A \in \mathbb{R}^{l \times d}$ can be viewed as a transformation ϕ_{A} ,

$$\phi_{\mathsf{A}}: \mathbb{R}^d \to \mathbb{R}^l, \quad x \mapsto Ax$$

 $l \ll d \implies$ dimensionality reduction

• Given D, let D_A be the joint distribution of (Ax, y), where $(x, y) \sim D$

Lemma (Johnson-Lindenstrauss)

Given the setting as above; let $l = O(\frac{\log |\mathcal{X}|}{\gamma^2})$. With high probability over the draw of a random matrix A (from some fixed distribution), the distribution D_A is still linearly separable.

We call such matrix A a J-L transform.

Large-margin linear learner using J-L transform

Algorithm:

- Input: training examples $S = \langle (x_1, y_1), \dots, (x_m, y_m) \rangle$
- Generate a random J-L transform $A \in \mathbb{R}^{l \times d}$
- Transformed training data $S_A = \langle (Ax_1, y_1), \dots, (Ax_m, y_m) \rangle$
- Use the consistency algorithm to find a classifier $\hat{w} \in \mathbb{R}^l$ consistent with S_A
- Return classifier $\hat{h}(x) = \operatorname{sign}(\langle \hat{w}, Ax \rangle)$

Analysis:

- + By J-L, \textit{D}_{A} is linearly separable and $\hat{\textit{w}}$ has zero training error on \textit{S}_{A}
- VC inequality $\implies \mathbb{P}_{(z,y)\sim D_A}(y\langle \hat{w}, z\rangle \leq 0) \leq O(\sqrt{\frac{l}{m}}) = O\left(\frac{1}{\gamma}\sqrt{\frac{1}{m}}\right)$
- Finally, we recognize that

$$\mathbb{P}_{(z,y)\sim D_A}(y\langle \hat{w},z\rangle \leq 0) = \mathbb{P}_{(x,y)\sim D}(\hat{h}(x) \neq y)$$