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AdaBoost [1]: recap

Input: training examples (x1, y1), . . . , (xm, ym), γ-weak learner WL

Initial distribution (D1(i) = 1
m )

m
i=1

For t = 1, . . . , T:

• Weak classifier ht ←WL trained on weighted examples
(xi, yi,Dt(i))mi=1

• Weighted error ϵt = P(x,y)∼Dt(ht(x) ̸= yt) ≤ 1
2 − γ

• Classifier weight αt = 1
2 ln

1−ϵt
ϵt

• Update weight on training examples:

Dt+1(i) =
Dt(i) · e−αtyiht(xi)

Zt
,

where Zt > 0 is a normalization factor.

Output final classifier HT(x) := sign(fT(x)), where fT(x) :=
∑T

t=1 αtht(x)
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AdaBoost in action

(See Prof. Rob Schapire’s slides)
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AdaBoost: Training error analysis

Theorem
Suppose for every t, ϵt ≤ 1

2 − γ, then

err(HT, S) ≤ exp(−2Tγ2).

Proof.
Step 1 : relaxing 0-1 error to exponential loss:

err(HT, S) ≤
1
m

m∑
i=1

e−yifT(xi) =: LT

Step 2 : bounding LT using the normalization factors: Lt
Lt−1

= Zt
Reason: there exists some Nt > 0, such that Dt(i) = e−yift−1(xi) ·Nt.
Therefore,

Lt
Lt−1

=
1
m
∑m

i=1 e−yift(xi)
1
m
∑m

i=1 e−yift−1(xi)
=
Nt ·

∑m
i=1 Dt(i)e−yiαtht(xi)

Nt ·
∑m

i=1 Dt(i)
= Zt
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AdaBoost: Training error analysis(cont’d)

Proof.
Step 2 : bounding LT using the normalization factors:

Note: L0 =
∑

i e−yif0(xi), where f0 ≡ 0. Therefore, L0 = 1.
Consequently,

LT = L0 ·
L1
L0
· . . . LT

LT−1
=

T∏
t=1

Zt.

Step 3 : bounding the normalization factors:

Zt =
m∑
i=1

Dt(i)e−αtyiht(xi)

=
∑
i

Dt(i)e−αt I(yi = ht(xi)) +
∑
i

Dt(i)eαt I(yi ̸= ht(xi))

=e−αt(1− ϵt) + eαtϵt

=2
√
ϵt(1− ϵt) ≤

√
1− 4γ2 ≤ exp(−2γ2).
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AdaBoost: generalization error analysis

Question
How should we choose T in AdaBoost to optimize for generalization
error?

A plausible answer:

• HT is chosen from hypothesis class

HT =

{
sign(

T∑
t=1

αtht(x)) : α ∈ RT,h1, . . . ,hT ∈ B
}
,

where B is the class WL uses to choose weak classifiers from
• By VC theory:

err(HT,D) ≤ err(HT, S) + O
(√

VC(HT)

m

)
,

where err(HT, S) decreases and VC(HT) increases in T
• So there is some tradeoff in the choice of T
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Theory vs. Practice

A typical learning curve of AdaBoost [2]:

How to explain this discrepancy between theory and practice?
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Margin-based generalization bounds for boosting [2]

Theorem
Suppose base class B is finite, C(B) =

{∑
h∈B αhh(x) :

∑
h∈B |αh| ≤ 1

}
is the set of voting classifiers over B. Fix margin θ ∈ [0, 1]. Then, with
probability 1− δ, for all f ∈ C(B),

PD(yf(x) ≤ 0) ≤ PS(yf(x) ≤ θ)︸ ︷︷ ︸
“Margin error” of f

+O
(
1
θ

√
ln |B|/δ
m

)

Application to AdaBoost:

1. Let f̄T(x) =
∑T

t=1 αtht(x)∑T
t=1 αt

∈ C(B), and θ = γ
2

2. PS(yfT(x) ≤ γ
2 ) ≤ exp(−Tγ2)

3. The “complexity term” O
(

1
γ

√
ln |B|/δ

m

)
is independent of T.
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What have we learned?

• Boosting: generic procedure that converts weak PAC learners to
strong PAC learners

• AdaBoost’s training error analysis
• AdaBoost’s generalization error analysis: VC-based vs.
margin-based
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