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Please complete the following exercises and read the following instructions carefully.

• Your solutions to these problems will be graded based on both correctness and clarity. Your arguments
should be clear: there should be no room for interpretation about what you are writing. Otherwise, I
will assume that they are wrong, and grade accordingly.

• If you feel unable to make progress on any of the questions, you can post your questions on Piazza.
Try posing your questions to be as general as possible, so that it can promote discussion among the
class.

• You are encouraged to discuss the homework questions with your classmates, but the discussions should
only be at a high level, and you should write your solutions in your own words. For every question you
have had discussions on, please mention explicitly whom you have discussed with; otherwise it may be
counted as academic integrity violation.

• For detailed homework policies, please read the course syllabus carefully, available on the course website.

This homework is due on((((((Jan 20, 2022 Jan 24, 2022, 5pm MST, on gradescope. Note that this calibration
homework counts toward total homework grades (4 pts / 40 pts).

Problem 1

Denote by B(n, p) the binomial distribution with n being the number of trials, and p being the success
probability of each trial. Suppose Y is a random variable such that P(Y = +1) = P(Y = −1) = 1

2 . In
addition, X has the following conditional probability distribution given Y : given Y = −1, X ∼ B(3, 23 );
given Y = +1, X ∼ B(2, 13 ). Answer the following questions:

1. Calculate the joint probability table of (X,Y ).

2. What is the value of P(Y = −1 | X = 1)?

3. Suppose we would like to find a function f : {0, 1, 2, 3} → {−1,+1} that minimizes its classification
error P(f(X) 6= Y ). Can you find the optimal f , and what is the optimal value of classification error?

Problem 2

Suppose we have a deterministic set of examples x1, . . . , xn ∈ Rd, a deterministic vector θ ∈ Rd, and a
set of independent random variables (noise) ε1, . . . , εn, where for each i, εi ∼ N(0, σ2) (here N denotes the
normal distribution). Each example xi is associated with a label yi, defined by yi = 〈θ, xi〉+ εi. Assume that
Σ =

∑n
i=1 xix

>
i is invertible. Answer the following questions:

1. What is the joint distribution of (y1, . . . , yn)?

1



2. Define random vector θ̂ = Σ−1(
∑n
i=1 xiyi) (this is the ordinary least squares estimator). What is the

distribution of θ̂?

3. Given a deterministic vector v, what is the distribution of random variable
〈
v, θ̂ − θ

〉
? Find a decreas-

ing function f : (0, 1]→ R, so that the statement

∀δ ∈ (0, 1] � P
(∣∣∣〈v, θ̂ − θ〉∣∣∣ ≥ f(δ)

)
≤ δ

holds. (You are free to use e.g. Markov’s Inequality, Chebyshev’s Inequality, or other probability
inequalities you know to construct your f ; the tightness of function f won’t be graded.)

Problem 3

In this exercise, we verify the theoretical claims in the Perceptron convergence theorm empirically. Through-
out, we assume that the sequence of online classification examples (x1, y1), . . . , (xn, yn) is such that (1) for
all t, ‖xt‖ ≤ 1; (2) there exists some w?, such that ‖w?‖ ≤ 1, and for all t, yt 〈w?, xt〉 ≥ γ.

In the class, we have seen that the Perceptron algorithm always makes at most 1/γ2 mistakes throughout
the process. In this exercise, we verify this claim empirically.

1. Let w? = ( 1√
2
, 1√

2
). Write a function generate data that receives a sample size parameter n and mar-

gin parameter γ as input, and output n independently drawn examples (x1, y1), . . . , (xn, yn), such that
for each i, xi comes from the uniform distribution over the regionRγ =

{
x ∈ R2 : ‖x‖2 ≤ 1, |〈w?, x〉| ≥ γ

}
,

and yi = sign(〈w?, xi〉).
Run generate data(n = 1000, γ = 1/32), give a scatterplot of the output examples in a 2-dimensional
plane, where for every example, its location indicates its x value, and its color indicates its y value.

2. In the Perceptron algorithm, define w(m) to be the linear classifier weight iterate after m mistakes
are made; for example, w(0) = (0, 0). Also let M be the total number of mistakes Perceptron makes
throughout the processing of all n examples.

Write a function sim perceptron that takes a linearly separable dataset of size n as input, simulates the
execution of Perceptron by processing the n examples from this dataset one by one, and outputsM . The
function should also generate two plots:

〈
w(m), w?

〉
, ‖w(m)‖ as functions of m, for m ∈ {0, 1, . . . ,M}.

Now run sim perceptron on the dataset you generate from step 1; report the M value, the final weight
wn+1, and show the two plots. Use the plots to verify that

∀m ∈ {0, 1, . . . ,M} �
〈
w(m), w?

〉
≥ γm, and ‖w(m)‖ ≤

√
m.

3. For each value of γ ∈
{

2−i : i ∈ {1, . . . , 6}
}

, do the following:

(a) Repeatedly run generate data(n = 100, γ) 10 times to generate 10 datasets.

(b) Run sim perceptron on the 10 datasets, obtaining 10 output values Mγ,1, . . . ,Mγ,10.

(c) Compute the average value M̄γ = 1
10

∑10
j=1Mγ,j .

Now, plot M̄γ as a function of γ. Is your plot of M̄γ always below the plot of the function g(γ) = 1
γ2 ?

Why?
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