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1 Stochastic linear contextual bandits

Stochastic linear contextual bandits setup:

For all t = 1, 2, . . . , T :

• Observe context xt in X (context space)

• Take action at in A = {1, ...K} (action space)

• Receive reward rt = f(xt, at) + εt

Here εt’s are independent Gaussian with mean 0 and variance 1. f(xt, at) = 〈θ∗, φ(x, a)〉, where θ∗ is
unknown and φ is known. Our goal is to maximize the expectation of reward:

E

[
T∑
t=1

rt

]
= E

[
T∑
t=1

f(xt, at)

]

Performance measure of the pseudo-regret is as following

RT = E

[
T∑
t=1

max
a∈A

f(xt, a)−
T∑
t=1

f(xt, at)

]

Assume :||θ∗||2 ≤ 1, for every x and a, ||φ(x, a)||2 ≤ 1, now we have two questions to explore:

1. how can we design a good algorithm such that the pseudo-regret is small? Recall that if we know θ∗

exactly, we can simply take the at = argmaxa∈A 〈θ∗, φ(x, a)〉. Can we estimate θ∗?
Specifically, At round t, we know allxs, as, rs for all s = 1, 2, ...t− 1. Given these information, can we
construct a good estimator of θ∗, denoted by θ̂t?

2. given θ̂t,how to take actions?
at = argmaxa〈θ̂t, φ(xt, a)〉+ exploration(a), find a that has the biggest upper confidence bound

1.1 How to accurately estimate θ

We can view this problem as a regression problem. We use the following ridge estimator:

θt(λ) = argmin
θ∈Rd

t−1∑
s=1

(〈θ, φs〉 − rs)2 + λ||θ||22

Informally we have the following result:

θt(0) = θ∗ + V −1
t−1(

t−1∑
s=1

φsεs)
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Since εs is Gaussian with variance 1,we should have V −1
t−1(

∑t−1
s=1 φsεs) as Gaussian with variance V −1

t−1 , we
should also have 〈θt(0), φ(x, a)〉 distributed as a Gaussian with mean 〈θ∗, φ(x, a)〉 and variance ||φ(x, a)||2

V −1
t−1

.Given

new x and a, we should be able to construct a confidence interval of 〈θ∗, φ(x, a)〉 based on θt(0) as follows.
Since

|〈θt(0), φ(x, a)〉 − 〈θ∗, φ(x, a)〉| ≤ ||φ(x, a)||V −1
t−1

√
ln

1

σ

With probability 1 − σ,By sub-Gaussian tail property. Therefore we can define a high probability upper
confidence bound of f(xt, a) as:

UCBt(a) = 〈θt(0), φ(x, a)〉+ ||φ(x, a)||V −1
t−1

√
ln

1

σ

However, the above reasoning is inherently flawed because of the following problem:

1. φt is somehow dependent on εt through at

2. Vt−1 may not be full rank.

There are papers devoted to solve the first problem using Specialized binning procedure which we won’t
elaborate. For problem 2 we can simply set λ > 0 in θ̂t(λ) – specifically we set λ = 1. Then we will work with

Vt−1(1) = Vt−1 + I, as our ridge estimator is θ̂t(1) = Vt−1(1)−1(
∑t−1
s=1 φsεs). In this case we can guarantee

that the matrix Vt−1(1) is full rank. The new bound for θ̂t(1) will be given in the following lemma:

Lemma 1. define

βt(σ) = 1 +

√
2 ln

1

σ
+ d ln(1 +

t

d
)

then exists event E, with probability P (E) ≥ 1− σ, and on E we have

||θ̂t(1)− θ∗||Vt−1(1) ≤ βt(σ)

for all t.

We now demonstrate the proof of this lemma (Aner, et al. 2002).

θ̂t(1)− θ∗ = V −1
t (1)(Vt−1θ

∗ +

t−1∑
s=1

φsεs)− θ∗

= V −1
t (1)(Vt−1θ

∗ +

t−1∑
s=1

φsεs)− V −1
t (Vt−1 + I)θ∗

= −V −1
t (1)θ∗ + V −1

t−1(1)

t−1∑
s=1

φsεs

(1)

Applying the Mahalanobis norm

||θ̂t(1)− θ∗||Vt−1(1) ≤ ||V −1
t (1)θ∗||Vt−1(1) + ||V −1

t−1(1)

t−1∑
s=1

φsεs||Vt−1(1)

= ||θ∗||Vt−1(1) + ||
t−1∑
s=1

φsεs||V −1
t−1(1)

≤ 1 + ||
t−1∑
s=1

φsεs||Vt−1(1)

(2)

To finish the proof we need to introduce another lemma called self-normalized bound
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Lemma 2. there exists an event E, with probability P (E) ≥ 1− σ, we have the following inequality:

||
t∑

s=1

φsεs||V −1
t (λ) ≤

√
a ln

1

σ
+ d ln 1 +

t

d

Using the above lemma with λ = 1, can conclude that with probability 1− σ,

||θ̂t(1)− θ∗||Vt−1(1) ≤ βt(σ) = 1 +

√
2 ln

1

σ
+ d ln(1 +

t

d
)

which finishes the proof of Lemma 1.

1.2 How to take actions after estimating θ∗

The question now is how do we use the previous lemma to define a Upper confidence bound for actions’
rewards. To do that we define a set Θt as following:

Θt = θ : ||θ̂t(1)− θ||Vt−1(1) ≤ βt(σ)

we know for event E, the θ∗ lies in this set. At step t we want to construct a UCB for 〈θ∗, φ(xt, a)〉 for all a.
The UCB of step t for action a is defined as following:

UCBt(a) = max
θ∈Θt

〈θ, φ(xt, a)〉

After simplification and derivation we have

UCBt(a) = 〈θ̂t(1), φ(xt, a)〉+ βt(σ) ∗ ||φ(xt, a)||V −1
t−1

The first term of the previous equation is considered as predicted reward and the second term is the
uncertainty for this prediction.

The algorithm will simply be the following:

Algorithm 1 LinUCB / OFUL for Stochastic linear contextual bandits

for t = 1, 2, · · · , T do
at = argmaxa∈A UCBt(a)

end for

2 Analysis of LinUCB

We state the main theorem as following:

Theorem 3. For LinUCB we have

RT ≤ O(Tσ + βT (σ)

√
dT ln(1 +

T

d
))

If we set σ = 1
T , RT ≤ Ô(d

√
T ).

Note that for MAB define φ(x, a) = ea the bound is K
√
T , and recall that our direct analysis of UCB

gives regret
√
KT , which is of lower order.
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Proof. On event Ē,contributions to RT is bounded by 2Tσ. On event E we have the instantaneous regret
as:

ρt = max
a

f(xt, a)− f(xt, at)

≤ max
a

UCBt(a)− f(xt, at)

≤ UCBt(at)− f(xt, at)

≤ 〈θ̂t, φt〉+ βt(δ)||φt||−1
Vt−1
− 〈θ∗, φt〉

(3)

Applying the Cauchy Schwartz in equality and also the fact that||θ̂t − θ∗||Vt−1(1) ≤ βt we have the firs term
and the last term bounded by the middle term using the Vt−1norm.

〈θ̂t, φt〉 − 〈θ∗, φt〉 ≤ βt(δ)||φt||−1
Vt−1

(4)

so we have the following:
ρt = max

a
f(xt, a)− f(xt, at) ≤ 2βt(δ)||φt||−1

Vt−1
(5)

since Vt(1) � 2Vt−1(1) (left as an exercise), we have

ρt ≤ 4βt(σ)||φt||V −1
t (1)

Summing all the instantaneous regrets, we have

T∑
t=1

ρt ≤ 4βt(σ)

T∑
t=1

||φt||V −1
t (1)

Using Cauchy Schwartz and Elliptic potential we have

T∑
t=1

ρt ≤ 4βt(σ)

√
Td ln(1 +

T

d
)

This concludes the proof.
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