CSC 588: Machine learning theory

Spring 2021

Lecture 27: Stochastic linear contextual bandits:LinUCB/OFUL algorithm
Lecturer: Chicheng Zhang
Scribe: Dan Li

1 Stochastic linear contextual bandits

Stochastic linear contextual bandits setup:

For all t = 1, 2, ..., T:

- Observe context x_t in \mathcal{X} (context space)
- Take action a_t in $\mathcal{A} = \{1, ..., K\}$ (action space)
- Receive reward $r_t = f(x_t, a_t) + \epsilon_t$

Here ϵ_t 's are independent Gaussian with mean 0 and variance 1. $f(x_t, a_t) = \langle \theta^*, \phi(x, a) \rangle$, where θ^* is unknown and ϕ is known. Our goal is to maximize the expectation of reward:

$$\mathbb{E}\left[\sum_{t=1}^{T} r_t\right] = \mathbb{E}\left[\sum_{t=1}^{T} f(x_t, a_t)\right]$$

Performance measure of the pseudo-regret is as following

$$R_T = \mathbb{E}\left[\sum_{t=1}^T \max_{a \in \mathcal{A}} f(x_t, a) - \sum_{t=1}^T f(x_t, a_t)\right]$$

Assume : $||\theta^*||_2 \leq 1$, for every x and a, $||\phi(x, a)||_2 \leq 1$, now we have two questions to explore:

- 1. how can we design a good algorithm such that the pseudo-regret is small? Recall that if we know θ^* exactly, we can simply take the $a_t = \operatorname{argmax}_{a \in \mathcal{A}} \langle \theta^*, \phi(x, a) \rangle$. Can we estimate θ^* ? Specifically, At round t, we know $\operatorname{allx}_s, a_s, r_s$ for all $s = 1, 2, \dots t 1$. Given these information, can we construct a good estimator of θ^* , denoted by $\hat{\theta}_t$?
- 2. given $\hat{\theta}_t$, how to take actions? $a_t = \operatorname{argmax}_a \langle \hat{\theta}_t, \phi(x_t, a) \rangle + exploration(a)$, find a that has the biggest upper confidence bound

1.1 How to accurately estimate θ

We can view this problem as a regression problem. We use the following ridge estimator:

$$\theta_t(\lambda) = \operatorname*{argmin}_{\theta \in R^d} \sum_{s=1}^{t-1} (\langle \theta, \phi_s \rangle - r_s)^2 + \lambda ||\theta||_2^2$$

Informally we have the following result:

$$\theta_t(0) = \theta^* + V_{t-1}^{-1} (\sum_{s=1}^{t-1} \phi_s \epsilon_s)$$

Since ϵ_s is Gaussian with variance 1, we should have $V_{t-1}^{-1}(\sum_{s=1}^{t-1} \phi_s \epsilon_s)$ as Gaussian with variance V_{t-1}^{-1} , we should also have $\langle \theta_t(0), \phi(x, a) \rangle$ distributed as a Gaussian with mean $\langle \theta^*, \phi(x, a) \rangle$ and variance $||\phi(x, a)||_{V_{t-1}^{-1}}^2$. Given new x and a, we should be able to construct a confidence interval of $\langle \theta^*, \phi(x, a) \rangle$ based on $\theta_t(0)$ as follows. Since

$$|\langle \theta_t(0), \phi(x, a) \rangle - \langle \theta^*, \phi(x, a) \rangle| \le ||\phi(x, a)||_{V_{t-1}^{-1}} \sqrt{\ln \frac{1}{\sigma}}$$

With probability $1 - \sigma$, By sub-Gaussian tail property. Therefore we can define a high probability upper confidence bound of $f(x_t, a)$ as:

$$UCB_t(a) = \langle \theta_t(0), \phi(x, a) \rangle + ||\phi(x, a)||_{V_{t-1}^{-1}} \sqrt{\ln \frac{1}{\sigma}}$$

However, the above reasoning is inherently flawed because of the following problem:

- 1. ϕ_t is somehow dependent on ϵ_t through a_t
- 2. V_{t-1} may not be full rank.

There are papers devoted to solve the first problem using Specialized binning procedure which we won't elaborate. For problem 2 we can simply set $\lambda > 0$ in $\hat{\theta}_t(\lambda)$ – specifically we set $\lambda = 1$. Then we will work with $V_{t-1}(1) = V_{t-1} + I$, as our ridge estimator is $\hat{\theta}_t(1) = V_{t-1}(1)^{-1}(\sum_{s=1}^{t-1} \phi_s \epsilon_s)$. In this case we can guarantee that the matrix $V_{t-1}(1)$ is full rank. The new bound for $\hat{\theta}_t(1)$ will be given in the following lemma:

Lemma 1. define

$$\beta_t(\sigma) = 1 + \sqrt{2\ln\frac{1}{\sigma} + d\ln(1 + \frac{t}{d})}$$

then exists event E, with probability $P(E) \ge 1 - \sigma$, and on E we have

$$||\hat{\theta}_t(1) - \theta^*||_{V_{t-1}(1)} \le \beta_t(\sigma)$$

for all t.

We now demonstrate the proof of this lemma (Aner, et al. 2002).

$$\hat{\theta}_{t}(1) - \theta^{*} = V_{t}^{-1}(1)(V_{t-1}\theta^{*} + \sum_{s=1}^{t-1}\phi_{s}\epsilon_{s}) - \theta^{*}$$

$$= V_{t}^{-1}(1)(V_{t-1}\theta^{*} + \sum_{s=1}^{t-1}\phi_{s}\epsilon_{s}) - V_{t}^{-1}(V_{t-1} + I)\theta^{*}$$

$$= -V_{t}^{-1}(1)\theta^{*} + V_{t-1}^{-1}(1)\sum_{s=1}^{t-1}\phi_{s}\epsilon_{s}$$
(1)

Applying the Mahalanobis norm

$$\begin{aligned} ||\hat{\theta}_{t}(1) - \theta^{*}||_{V_{t-1}(1)} &\leq ||V_{t}^{-1}(1)\theta^{*}||_{V_{t-1}(1)} + ||V_{t-1}^{-1}(1)\sum_{s=1}^{t-1}\phi_{s}\epsilon_{s}||_{V_{t-1}(1)} \\ &= ||\theta^{*}||_{V_{t-1}(1)} + ||\sum_{s=1}^{t-1}\phi_{s}\epsilon_{s}||_{V_{t-1}(1)} \\ &\leq 1 + ||\sum_{s=1}^{t-1}\phi_{s}\epsilon_{s}||_{V_{t-1}(1)} \end{aligned}$$
(2)

To finish the proof we need to introduce another lemma called self-normalized bound

Lemma 2. there exists an event E, with probability $P(E) \ge 1 - \sigma$, we have the following inequality:

$$\left\|\sum_{s=1}^{t} \phi_s \epsilon_s\right\|_{V_t^{-1}(\lambda)} \le \sqrt{a \ln \frac{1}{\sigma} + d \ln 1 + \frac{t}{d}}$$

Using the above lemma with $\lambda = 1$, can conclude that with probability $1 - \sigma$,

$$||\hat{\theta}_t(1) - \theta^*||_{V_{t-1}(1)} \le \beta_t(\sigma) = 1 + \sqrt{2\ln\frac{1}{\sigma}} + d\ln(1 + \frac{t}{d})$$

which finishes the proof of Lemma 1.

1.2 How to take actions after estimating θ^*

The question now is how do we use the previous lemma to define a Upper confidence bound for actions' rewards. To do that we define a set Θ_t as following:

$$\Theta_t = \theta : ||\hat{\theta}_t(1) - \theta||_{V_{t-1}(1)} \le \beta_t(\sigma)$$

we know for event E, the θ^* lies in this set. At step t we want to construct a UCB for $\langle \theta^*, \phi(x_t, a) \rangle$ for all a. The UCB of step t for action a is defined as following:

$$UCB_t(a) = \max_{\theta \in \Theta_t} \langle \theta, \phi(x_t, a) \rangle$$

After simplification and derivation we have

$$UCB_t(a) = \langle \hat{\theta}_t(1), \phi(x_t, a) \rangle + \beta_t(\sigma) * ||\phi(x_t, a)||_{V_{t-1}^{-1}}$$

The first term of the previous equation is considered as predicted reward and the second term is the uncertainty for this prediction.

The algorithm will simply be the following:

Algorithm 1 LinUCB / OFUL for Stochastic linear contextual bandits

for $t = 1, 2, \cdots, T$ do $a_t = \operatorname{argmax}_{a \in A} UCB_t(a)$ end for

2 Analysis of LinUCB

We state the main theorem as following:

Theorem 3. For LinUCB we have

$$R_T \le \mathcal{O}(T\sigma + \beta_T(\sigma)\sqrt{dT\ln(1+\frac{T}{d})})$$

If we set $\sigma = \frac{1}{T}$, $R_T \leq \hat{\mathcal{O}}(d\sqrt{T})$.

Note that for MAB define $\phi(x, a) = e_a$ the bound is $K\sqrt{T}$, and recall that our direct analysis of UCB gives regret \sqrt{KT} , which is of lower order.

Proof. On event \overline{E} , contributions to R_T is bounded by $2T\sigma$. On event E we have the instantaneous regret as:

$$\rho_{t} = \max_{a} f(x_{t}, a) - f(x_{t}, a_{t})$$

$$\leq \max_{a} UCB_{t}(a) - f(x_{t}, a_{t})$$

$$\leq UCB_{t}(a_{t}) - f(x_{t}, a_{t})$$

$$\leq \langle \hat{\theta}_{t}, \phi_{t} \rangle + \beta_{t}(\delta) ||\phi_{t}||_{V_{t-1}}^{-1} - \langle \theta^{*}, \phi_{t} \rangle$$
(3)

Applying the Cauchy Schwartz in equality and also the fact that $||\hat{\theta}_t - \theta^*||_{V_{t-1}(1)} \leq \beta_t$ we have the first term and the last term bounded by the middle term using the V_{t-1} norm.

$$\langle \hat{\theta}_t, \phi_t \rangle - \langle \theta^*, \phi_t \rangle \le \beta_t(\delta) ||\phi_t||_{V_{t-1}}^{-1} \tag{4}$$

so we have the following:

$$\rho_t = \max_a f(x_t, a) - f(x_t, a_t) \le 2\beta_t(\delta) ||\phi_t||_{V_{t-1}}^{-1}$$
(5)

since $V_t(1) \leq 2V_{t-1}(1)$ (left as an exercise), we have

$$\rho_t \le 4\beta_t(\sigma) ||\phi_t||_{V_t^{-1}(1)}$$

Summing all the instantaneous regrets, we have

$$\sum_{t=1}^{T} \rho_t \le 4\beta_t(\sigma) \sum_{t=1}^{T} ||\phi_t||_{V_t^{-1}(1)}$$

Using Cauchy Schwartz and Elliptic potential we have

$$\sum_{t=1}^{T} \rho_t \le 4\beta_t(\sigma) \sqrt{Td\ln(1+\frac{T}{d})}$$

This concludes the proof.

	L	