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1 Stochastic linear contextual bandits
Stochastic linear contextual bandits setup:
Forallt=1,2,...,T:
e Observe context x; in X' (context space)
e Take action a; in A = {1,...K} (action space)
e Receive reward ry = f(xy,at) + €

Here ¢;’s are independent Gaussian with mean 0 and variance 1. f(xy,a;) = (6%, ¢(x,a)), where 0* is
unknown and ¢ is known. Our goal is to maximize the expectation of reward:
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Performance measure of the pseudo-regret is as following
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Assume :||0*||2 < 1, for every z and a, ||¢p(x,a)||2 < 1, now we have two questions to explore:

1. how can we design a good algorithm such that the pseudo-regret is small? Recall that if we know 6*
exactly, we can simply take the a; = argmax,¢ 4 (0", #(x,a)). Can we estimate 6*?
Specifically, At round ¢, we know allzg, as,rs for all s =1,2,...t — 1. Given these information, can we
construct a good estimator of 8*, denoted by 0,7

2. given 0;,how to take actions?

a; = argmax, (ét, ¢(xy,a)) + exploration(a), find a that has the biggest upper confidence bound

1.1 How to accurately estimate 6

We can view this problem as a regression problem. We use the following ridge estimator:

0:(\) = argmmz L 0s) —1s)2 + 0|13
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Informally we have the following result:



Since €, is Gaussian with variance 1,we should have Vtill(Zi;ll pses) as Gaussian with variance V,"} , we
should also have (0;(0), ¢(z, a)) distributed as a Gaussian with mean (6*, ¢(x, a)) and variance ||¢(x, a)] \%/,,1 .Given
t—1

new x and a, we should be able to construct a confidence interval of (6*, ¢(x,a)) based on ;(0) as follows.
Since

(6:0), 6(z,0)) — (6%, (2, 0))| < |6, @)y

With probability 1 — o,By sub-Gaussian tail property. Therefore we can define a high probability upper
confidence bound of f(x;,a) as:

UCBi(a) = (6u(0), 6(a, @) + 116z, @)l 1 /1n

However, the above reasoning is inherently flawed because of the following problem:
1. ¢; is somehow dependent on €; through a;
2. V;_1 may not be full rank.

There are papers devoted to solve the first problem using Specialized binning procedure which we won’t
elaborate. For problem 2 we can simply set A > 0 in 6;(\) — specifically we set A = 1. Then we will work with

Vie1(1) = Vi_y + I, as our ridge estimator is 6,(1) = V,_ 1( )~ (Zi 11¢s s)- In this case we can guarantee
that the matrix V;_1(1) is full rank. The new bound for 9t( ) will be given in the following lemma:

Lemma 1. define

Bi(o) =1+ \/2lni +dn(1+ 2)

then exists event E, with probability P(E) > 1 — o, and on E we have
116:(1) = 6*[lv,_, 1) < Bi(o)
for all t.

We now demonstrate the proof of this lemma (Aner, et al. 2002).
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Applying the Mahalanobis norm
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To finish the proof we need to introduce another lemma called self-normalized bound



Lemma 2. there exists an event E, with probability P(E) > 1 — o, we have the following inequality:
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Using the above lemma with A = 1, can conclude that with probability 1 — o,

5 1 t
[10:(1) = 0"|v,_, (1) < Be(0) =1+ \/2111 —+dn(1+ )

which finishes the proof of Lemma 1.

1.2 How to take actions after estimating 0*

The question now is how do we use the previous lemma to define a Upper confidence bound for actions’
rewards. To do that we define a set ©; as following;:

Oy =0:110:(1) = 0llv,_, 1) < Bi(0)

we know for event E, the 6* lies in this set. At step ¢ we want to construct a UCB for (6%, ¢(x¢, a)) for all a.
The UCB of step t for action a is defined as following:

UCB(a) = géfgfwa Pz, a))
After simplification and derivation we have
UCB(a) = (B:(1), (a1, a)) + Bu(o) * |[éer. )|y,
The first term of the previous equation is considered as predicted reward and the second term is the

uncertainty for this prediction.
The algorithm will simply be the following;:

Algorithm 1 LinUCB / OFUL for Stochastic linear contextual bandits
fort=1,2,---,7T do
a; = argmax,c 4 UCBy(a)
end for

2 Analysis of LinUCB

We state the main theorem as following;:

Theorem 3. For LinUCB we have
T
Ry < O(TJ + BT(U) dTln(l + E))

If we set 0 = 7, Ry < O(dVT).

Note that for MAB define ¢(x,a) = e, the bound is K+/T, and recall that our direct analysis of UCB
gives regret v KT, which is of lower order.



Proof. On event E contributions to Ry is bounded by 2T¢. On event E we have the instantaneous regret
as:

pr = max f(ze, a) — f(zr, ar)
< m(?xUCBt(a) =[xy, ar)
< UCBi(ar) — f(xy,aq)
< 0y, 1) + Bi(0)leel Iy, — (6%, 61)

Applying the Cauchy Schwartz in equality and also the fact that||6; — 0*[|v,_, 1) < B¢ we have the firs term
and the last term bounded by the middle term using the V;_jnorm.

(01, de) — (07, ) < 5t(5)||¢t||\21,1 (4)

so we have the following:
pt = mgxf(xt,a) — fae,ae) < 2B:(8)] |l (5)

since V(1) = 2V;_1(1) (left as an exercise), we have

pe < 4By (o) delly -1 (1)

Summing all the instantaneous regrets, we have
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Using Cauchy Schwartz and Elliptic potential we have
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This concludes the proof.



