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Lecture 26: Finish UCB Analysis; Adversial multi-armed bandit and EXP3
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1 UCB Analysis

Theorem 1. UCB satisfies two regret bounds dependent on action space K and time space T :

1. (gap dependent)

RT ≤
∑

a:∆(a)>0

16 lnT

∆(a)
+ 3K

Where ∆(a) = l(a)− l(a∗) is the suboptimality gap of action a.

2. (gap independent)

RT ≤ O(
√
TK)

The gap dependent bound is loose for the case where the suboptimality gaps are small. In the extreme
case where all ∆(a) = 1

T for a 6= a∗, the regret bound would be on the order of RT ≤ O(KT ), which is
clearly pessimistic. This motivates the gap independent bound, which we now prove.

Proof. We begin the proof by a useful lemma, which we proved last lecture.

Lemma 2. E[mT (a)] ≤ 16 lnT
∆(a)2 + 3

Define a cutoff ∆ > 0. Group the arms by arms above and below the threshold such that:

RT =
∑
a

E[mT (a)]∆(a) =
∑

a:∆(a)∈(0,∆]

E[mT (a)]∆(a) +
∑

a:∆(a)>∆

E[mT (a)]∆(a)

We can use lemma 2 and the fact that we pull arms for at most T times:

RT ≤ T∆ +
∑

a:∆(a)>∆

(
∆(a)

16 lnT

∆(a)2
+ 3∆(a)

)

≤ T∆ +
16K lnT

∆
+ 3K

Since each ∆(a) < 1 and ∆ > ∆(a) in the summation. Here, ∆ appears only in analysis, so we are free
to choose ∆ to minimize the lower bound. We therefore can equalize the two ∆ terms to obtain that

∆ =
√

K lnT
T and that the corresponding bound is

RT ≤ O(
√
TK lnT )

This concludes the proof.
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Algorithm 1 Multi-armed bandit

for t = 1, 2, · · · , T do
environment gives lt ∈ [0, 1]k

learner selects action at ∈ {1, · · · , k}
learner suffer loss lt(at)

end for

2 Adversial multi-armed bandit

In cases where losses are non-stationary or do not come from a distribution, can we still give algorithms
with regret guarantees? Recall the multi-armed bandit algorithm. We assume in this course that the lt’s are
chosen before iteration 1. This is referred to as an oblivious adversary. We allow the learner to randomly
select actions at based on a categorical distribution pt ∈ ∆K−1. The goal is to minimize the regret

RT = E
[ T∑
t=1

lt(at)

]
−min

a

T∑
t=1

lt(a)

Alternatively, we can use the fact that

Eat∼pt [lt(at)] =

k∑
a=1

pt(a)lt(a) = 〈pt, lt〉

min
a

T∑
t=1

lt(a) = min
p∈∆K−1

〈p,
T∑
t=1

lt〉

to write an alternative expression for the regret

RT = E
[ T∑
t=1

〈pt, lt〉 − min
p∈∆k−1

T∑
t=1

〈p, lt〉
]

Can we reuse the OMD algorithm to develop algorithms with low regret? At each time t, we are given
at ∼ pt, as well as the loss lt(at).

Key Idea We can perform OMD on unbiased estimators of lt’s. Define l̂t such that

Eat∼pt [l̂t] = lt

Here, low regret with respect to l̂t’s implies low regret with respect to lt’s. We construct l̂t by the following
method:

First, define

l̂t(a) =

{
0 at 6= a

x at = a

We can then use the expectation above to solve for x.

Eat∼pt [l̂t(a)] = (1− pt(a)) · 0 + pt(a) · (x) = lt(a)

x =
lt(a)

pt(a)
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We then write the estimator using an indicator

l̂t(a) =
lt(a)

pt(a)
I(a = at)

Using OMD with l̂t’s and Ω = ∆K−1,

ψ(p) =

K∑
a=1

p(a) ln p(a)

where p1 = ( 1
K , · · · ,

1
K ).

pt+1(a) ∝ pt(a) exp(−ηl̂t(a)) ∝ exp

(
− η

t∑
s=1

l̂s(a)

)
This is referred to as the EXP3 algorithm. We would like to understand how this algorithm achieves the
exploration/exploitation tradeoff.

1. (exploitation) When
∑t
s=1 l̂s(a) ≈

∑t
s=1 ls(a) is small, the probability pt+1(a) is greater, and thus

action a that creates the small loss is more likely to be chosen.

2. (exploration) Since η is finite, this creates diversity amongst the possibilities of actions chosen. η =∞
means that pt+1(a) = 0 for all a 6= at, which becomes follow the leader. In addition, for lt(at) > 0, the

update step pt+1(a) ∝ pt(a) exp(−ηl̂t(a)) skews pt+1 towards actions other than at. This effectively
encourages taking other actions. It is possible to show that for lt(at) < 0, EXP3 performs poorly.

3 Analysis of EXP3

Applying OMD guarantees naively yields

T∑
t=1

〈pt, l̂t〉 −
T∑
t=1

〈p, l̂t〉 ≤
ln d

η
+
η

2

T∑
t=1

||l̂t||2∞,∀p ∈ ∆k−1

We can then use properties of expectation to show that

E
[ T∑
t=1

〈pt, l̂t〉
]

= E
[ T∑
t=1

〈pt, lt〉
]

E
[ T∑
t=1

〈p, l̂t〉
]

= E
[ T∑
t=1

〈p, lt〉
]

This shows that the expectation of the left hand side of OMD guarantee is the regret quantity we want to
bound. We then analyze the right hand side. Based on the definition of l̂t, it is clear that

||l̂t||∞ =
lt(at)

pt(at)

We would like to improve the regret bound for OMD with negative entropy regularizers. However, it is
difficult to find a better bound on

Eat
(
lt(at)

pt(at)

)2

≤
∑
a

1

pt(a)

Since the pt(a)’s can be heavily skewed towards good options, some pt(a)’s can be arbitrarily small, and
thus this value cannot be well controlled. This motivates the following stronger guarantee for OMD with
negative entropy regularizer with positive loss vectors.
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Lemma 3. Given OMD with Ω = ∆K−1, ψ(w) as the negative entropy regularizer, and the learning rate η
on {ft(w) = 〈w, gt〉}Tt=1 where gt ∈ [0,∞]K , we obtain the regret bound

T∑
t=1

〈wt, gt〉 −
T∑
t=1

〈w, gt〉 ≤
lnK

η
+ η

T∑
t=1

||gt||2diag(wt)

=
lnK

η
+ η

T∑
t=1

K∑
a=1

wt(a)gt(a)2

Where diag(wt) is a diagonal matrix with entries wt(i) for i = 1, · · · ,K.

Proof. From OMD:

〈wt+1 − w, ηgt〉 ≤ Dψ(w,wt)−Dψ(w,wt+1)−Dψ(wt+1, wt)

≤ 〈wt − wt+1, ηgt〉+Dψ(w,wt)−Dψ(w,wt+1)

The update step of OMD is that

wt+1(a) =
wt(a)e−ηgt(a)

zt
≥ wt(a)e−ηgt(a)

since zt ≤ 1. We apply this inequality to the stability term:

〈wt − wt+1, ηgt〉 ≤
K∑
a=1

wt(a)(1− e−ηgt(a))ηgt(a)

Fact 4. ex ≥ 1 + x

Applying fact 4,

〈wt − wt+1, ηgt〉 ≤
K∑
a=1

wt(a)(1− (1− ηgt(a)))ηgt(a)

= η2
K∑
a=1

wt(a)gt(a)2

Summing over T and dividing by η, we obtain the above lemma. This concludes the proof.

Applying lemma 3 to EXP3,

RHS =
lnK

η
+ η

T∑
t=1

K∑
a=1

pt(a)l̂t(a)2

=
lnK

η
+ η

T∑
t=1

pt(at)

(
lt(at)

pt(at)

)2

≤ lnK

η
+ η

T∑
t=1

1

pt(at)

E[RHS] ≤ lnK

η
+ η

T∑
t=1

E
[ 1

pt(at)

]
Eat
[ 1

pt(at)

]
=

K∑
a=1

pt(a)
1

pt(a)
= K

E[RHS] ≤ lnK

η
+ ηTK
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To choose the learning rate to minize the regret bound, we balance the two terms so that

η =

√
lnK

TK

Summary We have shown that the LHS in expectation is the expression for our desired regret, and have
simplified bound for the RHS in expectation. This gives the following theorem:

Theorem 5. EXP3 with η =
√

lnK
TK has regret RT ≤ O(

√
TK lnK).
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