
CSC 588: Machine learning theory Spring 2021

Lecture 25: Explore-then-commit; UCB algorithm and analysis
Lecturer: Chicheng Zhang Scribe: Jesse Friedbaum

1 Stochastic Multi-Armed Bandits

Recall the product recommendation example set up:

For all t = 1, 2, . . . , T :

• There are environment draws `t ∈ [0, 1]k (which are note revealed to the learner). Let `t(i) represent
the ith element of `t.

• The learner selects action at ∈ {i}ki=1

• The learner suffers (and sees) loss `t(at)

Assume: ∀a, (`t(a))Tt=1 are drawn i.i.d. from a distribution over [0, 1] with mean `(a).
Our goal is to minimize the cost function

T∑
t=1

`t(at).

Example 1. Slot Machines: Suppose there are a row of k slot machines. If you use (pull the arm of)
the ith slot machine at time step t you loose `t(i) amount of money. The average money you lose playing
the ith slot machine is `(i). You wish to play a machine at every time step while loosing the least amount
of money.

Example 2. Restaurants: Suppose you have just moved to Tucson and find Tucson contains k restau-
rants. You eat out once a day and if you visit restaurant i on day j, you regret your decision `j(i) amount.
You wish minimize the sum of the regret you experience for your decisions in dining out.

The challenge comes from balancing two goals:

1. Explore: Learn which machine is best (has the highest average pay out). Equivalently learn which
restaurant you like the best.

2. Exploit: Play machines that are rewarding (have good payouts). Equivalently eat good food when
you dine out.

An important performance metric will be the psuedo-regret:

RT = E

[
T∑

t=1

`t(at)

]
− T`(a∗)

where
a∗ = argmin

a∈{i}ki=1

`(a).

This represents the difference between the expected loss using our choices and the expected loss from only
making the best choice (choosing the best slot machine).
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Because `t is drawn i.i.d. before at is chosen we may integrate out our randomness:

E`t∼D [`t(at)] = `(at).

This allows us to rewrite our formula for pseudo-regret.

Definition 1. The Psuedo-Regret for a stochastic multi-armed bandit problem is given by:

RT = E

[
T∑

t=1

(`(at)− `(a∗))

]

where
a∗ = argmin

a∈{i}ki=1

`(a).

2 ε - Greedy Algorithm

One algorithm to solve this problem is known as the ε - Greedy Algorithm. This algorithm consists of picking
some percentage of the time ε, which we will spend exploring. The remaining (1− ε) amount of time is used
to exploit the knowledge we have about the payouts of each arm.

We define some new quantities to help describe this algorithm. We begin with the number of times we
have visited arm a at time t:

mt(a) =

t∑
s=1

I(as = a).

We now define the empirical average for arm a at time t:

¯̀
t(a) =

{ ∑t
s=1 I(as=a)`s(as)

mt(a) mt(a) > 0

1 mt(a) = 0

With these values we may define this algorithm as follows.

Algorithm 1 ε - Greedy

Initialize ¯̀
t to 0

for t = 1, 2, · · · , T do
Draw x ∼ uniform ([0, 1])
if x ≤ ε then
at ∼ uniform

(
{i}ki=1

)
else
at = argmina

¯̀
t−1(a)

end if
Receive loss and update ¯̀

t.
end for

With appropriate tuning of ε this algorithm can achieve

Rt ≤ O
(
k

1
3T

2
3

)
.

3 Explore-then-commit

Another algorithm for stochastic multi-armed bandits Explore-then-commit, described below.

2



Algorithm 2 Explore-then-commit

for t = 1, 2, · · · ,M do
at = ((t− 1) mod k) + 1

end for
calculate â = argmina

¯̀
M (a)

for t = M + 1,M + 2, · · · , T do
at = â

end for

We will begin with some rough analysis of this algorithm. We first divide the algorithm into two parts:
the first for loop is entirely dedicated to exploration and will be called the exploration step; the second for
loop is entirely dedicated to exploitation and will be called the exploitation step. We bound the exploration
step with the size of the loop: O(M). For the exploitation step, we recognize that we are simply making the
empirically best choice and may therefore use the same tools from ERM analysis. Our error bound on our

estimate of `(a) is given by ±
√

k
M . This implies

`(â) ≤ `(a∗) +

√
k

M

where, as usual, a∗ = argmina `(a). Then for each step of the exploitation step we incur a maximum regret

of
√

k
M and the regret of the entire exploitation step may be bounded by O

(
(T −M)

√
k
m

)
or loosing the

bound slightly O
(
T
√

k
m

)
. Adding our two rough bounds for the regret from the exploration step and the

exploitation step, we arrive at the bound for total regret:

RT ≤ O

(
M + T

√
k

M

)
.

The M value that minimizes this bound is M = k
1
3T

2
3 which leads to a final regret bound of

RT ≤ O
(
k

1
3T

2
3

)
. (1)

We will now try to find this bound more rigorously. To do this we will begin with an important lemma.

Lemma 2. If k ≤ T there exists and event E known as the “clean event,” which happens with probability

P (E) ≥ 1− 2

T

in which ∀a and ∀t ∣∣∣ˆ̀t(a)− `t(a)
∣∣∣ ≤ 2

√
ln(T )

mt(a) + 1

Note that the +1 in the denominator of the right hand side of the above inequality is only there to deal
with the mt(a) = 0 case.

The proof of this lemma is a non-trivial application of Hoeffding’s inequality and the union bound. For
more information see Slivkin’s Introduction to Multi-Armed Bandits. (Chicheng notes after lecture: See
Section 1.3.1 of that book for a very careful treatment.)

We are now ready to prove (1).
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Proof. The first step in finding our regret will be to split our regret into the regret if the clean event occurs
and the regret if the clean event does not occur.

RT = E

[
T∑

t=1

(`(at)− `(a∗))

]

RT = P (EC) · E

[
T∑

t=1

(`(at)− `(a∗)) I(EC)

]
+ P (E) · E

[
T∑

t=1

(`(at)− `(a∗)) I(E)

]
(2)

Recalling both `(at) ∈ [0, 1] and `(a∗) ∈ [0, 1] we find

P (EC) · E

[
T∑

t=1

(`(at)− `(a∗)) I(EC)

]
≤ P (EC) · E

[
T∑

t=1

(1)

]
≤ P (EC) · T
≤ 2 (3)

where the last inequality comes for the application of lemma 2.
We no rewrite

T∑
t=1

(`(at)− `(a∗)) =

M∑
t=1

(`(at)− `(a∗)) +

T∑
t=M+1

(`(at)− `(a∗)) (4)

The first sum in the right hand side may be easily bounded

M∑
t=1

(`(at)− `(a∗)) ≤M (5)

The second sum is somewhat more complicated to bound, however applying lemma 2 yields

T∑
t=M+1

(`(at)− `(a∗)) ≤
T∑

t=M+1

(
4

√
ln(T )
M
k + 1

)

= (T −M) ·

(
4

√
ln(T )
M
k + 1

)

≤ T ·

(
4

√
ln(T )

M
k

)
(6)

Substituting (5) and (6) into (4) gives us

T∑
t=1

(`(at)− `(a∗)) = M + 4T

√
k ln(T )

M
. (7)

Substituting (3) and (7) into (2) leaves us with

RT = 2 +M + 4T

√
k ln(T )

M
.

finally if we choose M = k
1
3T

2
3 , we get

RT ≤ O
(
k

1
3T

2
3

)
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4 Upper Confidence Bound Algorithm

We now demonstrate a better algorithm known as the Upper Confidence Bound (UCB) algorithm (Aner,
et al. 2002). The idea behind this algorithm is to use confidence bounds to guide the exploration of our
algorithm. The original paper was focused on reward maximization instead of loss minimization so we will
modify the algorithm slightly to focus on loss minimization.

To define this algorithm we first define our lower confidence bounds

LCBt(a) = ¯̀
t−1(a)− bt(a)

where

bt(a) = 2

√
ln(T )

mt−1(a) + 1

is derived from lemma 2. Our algorithm may then be written

Algorithm 3 UCB algorithm

for t = 1, 2, · · · , T do
at = argmina LCBt(a)
receive loss and update the LCB’s

end for

To motivate this algorithm consider figure 3. The algorithm is biased towards actions with a low empirical
loss (¯̀

t(a)). This can be seen in the fact that if we are using the bounds drawn in blue, action 1 would be
chosen. However, if we have a very low degree of certainty about the loss on an arm, we will choose that
instead of an arm with a better emperical loss. For example, we are using the bounds drawn in black, action
2 would be taken even though it has a higher empirical loss.

Figure 1: Example of how the UCB algorithm chooses actions

Before we analyze the performance of this algorithm, we need one more definition:

Definition 3. The suboptimality gap of a choice “a” is given by

∆(a) = `(a)− `(a∗).
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Note that if the suboptimality gap of a is very large, then a is easily eliminated as poor choice of action.
On the other hand, if the suboptimality gap of a is very small, then a is hard to eliminate as a suboptimal
choice, but a also yields very little regret when chosen. Essentially it is an “easy” case if ∆(a) is very large
or very small.

The performance of LCB is given by the following theorem.

Theorem 4. The LCB algorithm satisfies

RT ≤
∑

a:∆(a)>0

16 ln(T )

∆(a)
+ 3k (8)

RT ≤ O
(√

TK
)

(9)

Equation (8) is known as the gap dependent bound and (9) is known as the gap independent bound. The
gap dependent bound is good for cases where the suboptimality gaps are large, but if all the suboptimality
gaps are small (e.g. ∆(a) = 1

T , ∀a 6= a∗), then the gap dependent bound gives very large regret despite this
being an “easy” case. In these cases the gap independent bound is more useful.

There is also a matching lower bound theorem.

Theorem 5. There exist a constant c > 0, such that for any algorithm A, there exist a stochastic Multi-
Armed Bandit environment, such that A satisfies RT ≥ c ·

√
Tk.

In order to prove theorem 4, we will need a couple of lemmas.

Lemma 6. On event E (the clean event):

LCBt(a) ≤ `(a) (10)

LCBt(a) ≥ `(a)− bt(a) (11)

Inequality (10) is known as honesty and (11) is known as tightness. The proof is straight forward, and
we provide a brief outline here.

Figure 2: Visual representation of lemma 6

Proof. In event E

LCBt(a) = ¯̀
t−1(a)− bt(a)

≤ (`(a) + bt(a))− bt(a)

= ¯̀(a)
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and

LCBt(a) = ¯̀
t−1(a)− bt(a)

≥ (`(a)− bt(a))− bt(a)

= `(a)− 2bt(a)

Lemma 7. For all a, E [mT (a)] ≤ 16 ln(T )
∆(a)2 + 3

This lemma is useful because it allows us to bound the number of pulls on an arm that is highly subop-
timal. We now prove lemma 7.

Proof. Define

N(a) =

⌈
16 ln(T )

∆(a)2

⌉
(12)

We prove that on event E, mT (a) ≤ N(a). Suppose by way of contradiction that mT (a) ≥ N(a) + 1.
Then there must exist some value t such that at = a and mt−1(a) = N(a). This implies that

2bt(a) < ∆(a). (13)

The proof of equation (13) is left as an exercise to the reader. Now consider

LCBt(a) ≥ `(a)− 2bt(A)

> `(a)−∆(a)

= `(a∗)

≥ LCBt(a
∗). (14)

That suggests that LCBt(a) is not the minimum among all arms at round t, contradicting the fact that
at = a. This proves (12).

We now consider the expectation on mT (a).

E [mT (a)] = E [mT (a)I(E)] + E
[
mT (a)I(EC)

]
≤ E [mT (a)I(E)] + T · P (EC)

≤ E [mT (a)I(E)] + 2 (15)

≤
⌈

16 ln(T )

∆(a)2

⌉
+ 2 (16)

≤ 16 ln(T )

∆(a)2
+ 3

We justify (15) with lemma 2 and (16) with (12).

Figure 3: Visual representation of the contradiction argument from equation (14)

We are now ready to prove the gap dependent bound (9).
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Proof.

RT = E

[
T∑

t=1

`(at)− `(a∗)

]

= E

[
T∑

t=1

∆(at)

]

= E

[
k∑

t=a

∑
t:at=a

∆(a)

]

= E

[
k∑

t=a

mT (a) ·∆(a)

]

=

k∑
t=a

∆(a)E [mT (a)] (17)

=
∑

a:∆(a)>0

∆(a)E [mT (a)]

≤
∑

a:∆(a)>0

∆(a) ·
(

16 ln(T )

∆(a)2
+ 3

)

≤
∑

a:∆(a)>0

16 ln(T )

∆(a)
+

∑
a:∆(a)>0

3

=
∑

a:∆(a)>0

16 ln(T )

∆(a)
+ 3k

Note (17) comes from lemma 7.
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