
CSC 588: Machine learning theory Spring 2021

Lecture 23: Kernel Methods. Online Newton step for exp-concave functions
Lecturer: Chicheng Zhang Scribe: Robert Vacareanu

1 Kernel Methods

Goal Remember that the goal is to find w ∈ RN that approximately minimizes:
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m

m∑
i=1

`(w, (φ(xi), yi)) +
λ

2
||w||22 =

1

m

m∑
i=1

f(yi〈w, φ(xi)〉) +
λ

2
||w||22 (1)

Key Idea Instead of keeping track of wt ∈ RN explicitly, keep track of the coefficient of wt, αt ∈ Rm.
Maintain invariant that wt =

∑m
i=1 αt(i)φ(xi)

Algorithm 1 Original Stochastic Gradient Descent

Input: data (xi, yi)
m
i=1, initialize w1 = ~0 ∈ Ω = Rd.

for t = 1, 2, · · · , T do
sample it in Uniform({1..n})
ft(w) = l(w, (xit , yit)) + λ

2 ||w||
2
2

calculate gt using vt ∈ ∂lt(wt): gt = vt + λwt
update: wt+1 ← wt − 1

λt (λwt + vt)
end for

Question Can we modify the algorithm such that instead of keeping track of the wt’s, we keep track of αt’s.
We are going to utilize this special structure of the loss function to calculate the subgradient vt for each round.
To do this, recal that l(w, (xit , yit))+ λ

2 ||w||
2
2 is f(yit〈w, φ(xit)〉)+ λ

2 ||w||
2
2 (which is = ft(w) = lt(w)+ λ

2 ||w||
2
2)

To calculate the gradient of this we will use the following fact:

Fact 1. f : R→ R convex, h(x) = f(〈a, x〉+ b). Suppose z ∈ ∂f(〈a, x〉+ b), then za ∈ ∂f(w).

Applying Fact 1, we will have to find zt ∈ ∂f(yit〈wt, φ(xit)〉). We will use the kernel trick (discussed last
lecture) to calculate this efficiently. Also, we have vt as vt = ztyitφ(xit) ∈ ∂lt(wt). Rewriting the recurrence
for wt yields:

wt+1 = (1− 1

t
)wt −

1

λt
ztyitφ(xit)

= (1− 1

t
)

m∑
i=1

αt(i)φ(xi)−
1

λt
ztyitφ(xit)

m∑
i=1

αt+1(i)φ(xi)

How to update the αt+1 based on αt? We will compare coefficients in two cases: i = it and i 6= it:

αt+1(i) =

{
(1− 1

t )αt(i)−
1
λtztyit , i = it

(1− 1
t )αt(i), i 6= it
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We get the following recurrence:

αt+1 = − 1

λt

t∑
s=1

zsyiseis

Where ei denotes the canonical basis in Rm with 1 on the i-th position and 0 everywhere else.

Summary In summary, we developed a regularized loss minimization algorithm on the feature space with
time complexity independent of the feature dimension N .

2 Online convex optimization of exp-concave functions

Informally, exp-concave functions are a family of concave function with desirable properties (they have
curvature, but not as strong as with strongly-convex functions; quadratic lower-bound property only happens
for some directions)

Definition f is called α-exp-concave if exp(−αf(a) is concave

Lemma 2. If f is twice differentiable and α-exp-concave, then ∀x:

O2f(x) � αOf(x) · Of(x)T

Where A � B means that A−B is positive semi definite

Fact 3. If f is twice differentiable, then:

f convex ⇐⇒ O2f(x) � 0

f concave ⇐⇒ O2f(x) � 0

Furthermore, if f is λ-sc with respect to || · ||2 ⇐⇒ ∀x O2f(x) � λ · I (Chicheng notes: this does not
necessarily hold for other norms.)

Figure 1: Venn diagram of the three types of convex functions that we encountered so far.

For two of the three families of convex functions we know upper bounds on the achievable regret (
√
T

for convex functions and ln(T )
λ for strongly convex functions). But what regret upper bounds are achievable

for exp-concave funnctions?
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The proof of the lemma uses the afore introduced fact on g(w) = exp(−αf(w)), which is concave. Then,
we calculate the first-order and second order derivatives and use the fact that the Hessian is negative semi
definite and use Lemma 2:

Og(w) = −α exp(−αf(w))Of(w)

O2g(w) = α2 exp(−αf(w))Of(w) · Of(w)T + (−α) exp(−αf(w)O2f(w))

= exp(−αf(w))(α2Of(w)Of(w)T − αO2f(w))

2.0.1 Two examples

Portofolio selection

Ω = 4d−1

rt =
unit price of asset at the end of the day t

unit price of asset at the end of the day t− 1

ft(w) = − ln(〈rt, w〉)

RT (w∗) =

T∑
t=1

ft(wt)−
T∑
t=1

ft(w
∗)

The first term of RT (w∗) is called negative log wealth of the investor/learning algorithm and the second
term is called constant rebalance portofolio (CRP). The reason of why is CRP an interesting benchmark is
summarized in the table below:

t rt(1) rt(2)
1 1 1

2
2 1 2
3 1 1

2
4 1 2
.. .. ..

Table 1: Stock evolution for stock 1 (rt(1)) and stock 2 (rt(2)). Notice that the evolution of rt(2) is cyclic.

Assume w∗ = (1/2, 1/2) and initial weight 1. Because we have 〈rt, w〉 equal to 3/4 when odd and 3/2
when even, we have:

wealth = (
9

8
)

T
2

Regression example

Ω = {w ∈ Rd : ||w||2 ≤ B}

ft(w) =
1

2
(〈w, xt〉 − yt)2

||xt||2 ≤ R
|yt| ≤ Y

By using the Lemma 2 we can show that ft(w) is 1
(RB+Y )2 -exp-concave (exercise).

2.1 Algorithms for online exp-concave optimization

We will reuse OMD framework, but we will not use one single distance generating function, but a family of
distance generating function (adaptively generated on the fly).
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Algorithm 2 Online Newton Step

Assume: Ω with maxu,v∈Ω ||u− v||2 ≤ B, {ft}Tt=1 exp-concave and L -Lipschitz
Require: λ, α̃ (parameters of the algorithm)

Initialize: w1 ← an arbitrary point in Ω
for t = 1, 2, · · · , T do

show wt
receive ft
update wt as wt+1 = argmin 〈w, gt〉 + Dψt(w,wt), where gt ∈ ∂ft(wt) and ψt(w) = 1

2 ||w||
2
At

and

At = λI + α̃
∑t
s=1 gsg

T
s

end for

Alternatively, the algorithm in 2 can also be viewed as a two step update (like in the beginner of this
lecture). You can first do an unconstrained minimization, which is basically a quadratic minimization.

w′t+1 = wt −A−1
t gt

wt+1 = argmin
w∈Ω

||w − w′t+1||At

2.1.1 Analysis of Online Newton Step

Theorem 4. With the setting of λ = 1
α̃B2 , α̃ = min( 1

8BL ,
α
2 ), Online Newton Step gives:

RT (Ω) ≤ O(
1

α̃
d ln(T ))

= O((
1

α
+ LB)d ln(T ))

Basically, Online Newton Step achieves a regret guarantee that is logarithmic in T , similar to strong
convexity case, but we are paying an additional price: the dimensionality of the decision space. To prove
the theorem we will need some properties of the exp-concave function. Especially, the following key lemma.

Lemma 5. If f is α-exp-concave and L-Lipschitz, then ∀u, v ∈ Ω:

f(u) ≥ f(v) + 〈Of(v), u− v〉+
α̃

2
· (u− v)TOf(v)Of(v)T (u− v)

Remark 6. Chicheng notes after the lecture: if f is nondifferentiable at v, then the above inequality is still
true by replacing the above ∇f(v) with any gv ∈ ∂f(v). See Piazza for a link to the proof of this lemma.

The proof of Theorem 4 also requires a ”linearization” step similar to the first step in the regret analysis
for OGD / OMD. To prove the theorem, we first upper-bound the instantaneous regret by taking advantage
of Lemma 5:

ft(wt)− ft(u) ≤ 〈gt, wt − u〉 −
α̃

2
(wt − u)T gtg

T
t (wt − u)

The proof is delayed to next lecture.

4


