
CSC 588: Machine learning theory Spring 2021

Lecture 22: OGD for Strongly Convex Functions and Kernel Methods
Lecturer: Chicheng Zhang Scribe: Zisu Wang

1 Fast Algorithms for Regularized Loss Minimization

In today’s lecture, we will discuss how to exploit the strong-convexity structure of functions to conduct
online convex optimization (OCO), as well as kernel methods. For motivation, let us consider the following
familiar example on regularized loss minimization:

min
w

1

m

m∑
i=1

`(w, (xi, yi)) +
λ

2
||w||22︸ ︷︷ ︸

FS(w)

, ||xi||2 ≤ B, (1)

where `(w, (xi, yi)) is the loss function for sample (xi, yi) given w, such as logistic loss or hinge loss. Then,
our goal is to approximately optimize the objective (1), i.e., find w such that

FS(w) ≤ FS(ŵ) + ε, ŵ = argmin
w

FS(w). (2)

To do this, we can consider the following ideas to achieve fast convergence.

- Idea 1: Gradient Descent

Algorithm 1 lists the implementation of Gradient Descent. For each iteration t, we use the current iterate
wt and the negative (sub)gradient of the objective FS to update the next iterate wt+1, i.e., wt+1 ←
wt − η∇FS(wt). To analyze the algorithm’s convergence, we can apply the analysis of OCO seen before.
Specifically, let ft = FS and by the regret guarantee of online gradient descent (OGD), we can show that

by appropriately tuning the step size η, we can guarantee that for the average iterate w̄T = 1
T

∑T
t=1 wt

satisfies FS(w̄) − FS(ŵ) ≤ O
(

1√
T

)
. Then, by choosing the number of iterations T = O(1

ε2), we can find

the suboptimal w that satisfies the objective (2).

To derive the computational complexity of the approach, notice that for each iteration t, evaluating the
full (sub)gradient ∇FS(wt) requires to calculate the (sub)gradient of individual losses ∇(`(wt, (xi, yi))) for
each sample (xi, yi), thus taking O(m) time in total. Then, the total running time would be O(mε2).

Algorithm 1 Gradient Descent

Input: data (xi, yi)
m
i=1, initialize w1 ∈ Ω.

for t = 1, 2, · · · , T do
FS(wt) = 1

m

∑m
i=1 `(w, (xi, yi)) + λ

2 ||w||
2
2

wt+1 ← wt − η∇(FS(wt))
end for
Output: w̄T = 1

T

∑T
t=1 wt

- Idea 2: Stochastic Gradient Descent

Define D̂ = uniform((xi, yi)
m
i=1). Then we can apply the Stochastic Gradient Descent algorithm shown

in Algorithm 2 by using OGD on the regularized losses induced by random examples drawn from D̂ and
doing online-to-batch conversion.

1

To analyze the algorithm, we can show that E[LD(w̄T)] − LD(w∗) ≤ E[RT (w∗)] ≤ O
(

1√
T

)
, where w∗ =

argminw LD(w) based on the results from previous lecture. Then, as FS(w̄T) = LD(w̄T) and FS(ŵ) =

LD(w∗), we have E[FS(w̄T)]−FS(ŵ) ≤ O
(

1√
T

)
. and we can thus find the suboptimal w that satisfies the

objective (2) by letting T = O
(

1
ε2

)
,

However, the key insight of Stochastic Gradient Descent is that instead of evaluating the (sub)gradient of
individual losses for all samples, we just need to calculate the (sub)gradient for only one training example
in each iteration. Therefore, the running time for the algorithm is O(1

ε2), which significantly improves over
the running time O(mε2) for Gradient Descent.

Algorithm 2 Stochastic Gradient Descent

Input: data (xi, yi)
m
i=1

for t = 1, 2, · · · , T do
Sample it ∼ uniform({1, 2, · · · ,m})
ft(w) = `(w, (xit , yit)) + λ

2 ||w||
2
2

wt+1 ← wt − ηgt where gt ∈ ∂ft(wt)
end for
Output: w̄T = 1

T

∑T
t=1 wt

2 OGD with Time-Varying Step Size

As we have seen, both Gradient Descent and Stochastic Gradient Descent can achieve good convergence for
the regularized loss minimization. However, it turns out that by applying OGD with time-varying step size,
whose details are listed in Algorithm 3, we can further exploit the strong-convexity structure of the objective
function (1) and get a better regret guarantee.

Algorithm 3 Online Gradient Descent with Time-Varying Step Size

Input: data (xi, yi)
m
i=1

for t = 1, 2, · · · , T do
Sample it ∼ uniform({1, 2, · · · ,m})
ft(w) = `(w, (xit , yit)) + λ

2 ||w||
2
2

ηt = 1
λt

wt+1 ← wt − ηtgt where gt ∈ ∂ft(wt)
end for
Output: w̄T = 1

T

∑T
t=1 wt

Although Algorithm 3 looks similar to the Stochastic Gradient Descent algorithm, the step size in Algo-
rithm 3 is ηt = 1

λt and thus time-varying. From the following theorem, we can show that such time-varying
step size, combined with the strong-convexity structure of the loss functions {ft}Tt=1, allows us to achieve a
better regret guarantee when the (sub)gradient gt is bounded.

Theorem 1. Assume the decision set Ω is convex and {ft}Tt=1 are λ-SC w.r.t. || · ||2. We run the OGD
with time-varying step size as follows: wt+1 ← wt − ηtgt where gt ∈ ∂ft(wt). Let ηt = 1

λt and assume

∀t, ||gt||2 ≤ L. Then, RT (Ω) ≤ (lnT+1)L2

2λ .

Note.

1. The regret RT (Ω) ≤ (lnT+1)L2

2λ is much better than the basic O(
√
T) regret by exploiting strong

convexity.

2

2. Theorem 1 implies that running 1
λt -step-size OGD yields FS(w̄T) − FS(ŵ) ≤ Õ

(
1
T

)
. Therefore, we

only need to choose T = O
(

1
ε

)
� O

(
1
ε2

)
.

Proof.

By quadratic lower bound property of λ-SC functions (see Figure 2), we have

ft(wt)− ft(u) ≤ 〈gt, wt − u〉 −
λ

2
||wt − u||22, (3)

which improves over the linearization step by utilizing λ-SC. Moreover, recall that in OGD analysis,

〈gt, wt − u〉 ≤
||u− wt||22 − ||u− wt+1||22

2ηt
+
ηt
2
||gt||22. (4)

/

Figure 1: We can lower-bound the λ-SC function ft(w) by h(w) = f(u) + 〈gu, w − u〉+ λ
2 ||w − u||

2
2.

Combining (3) and (4), we have

T∑
t=1

ft(wt)− ft(u) ≤
T∑
t=1

||u− wt||22 − ||u− wt+1||22
2ηt

−
T∑
t=1

λ

2
||u− wt||22 +

T∑
t=1

ηt||gt||22. (5)

For the above inequality, we break down the summation of ||u−wt||22 over t and check their coefficients:

- Coefficient of ||u− w1||22 : 1
2η1
− λ

2 = 0;

- Coefficient of ||u− w2||22 : − 1
2η1

+ 1
2η2
− λ

2 = 0;

- · · ·
- Coefficient of ||u− wT ||22 : − 1

2ηT−1
+ 1

2ηT
− λ

2 = 0.

Therefore, all the terms except − ||u−wT+1||22
2ηT

≤ 0 in
∑T
t=1

||u−wt||22−||u−wt+1||22
2ηt

will be cancelled out. We thus
have

RT (u) ≤
T∑
t=1

ηt
2
||gt||22 ≤

L2

2λ

(
T∑
t=1

1

t

)
=
L2
(

1 +
∑T
t=2

1
t

)
2λ

≤
L2
(

1 +
∫ T

1
1
t dt
)

2λ
=
L2 (1 + lnT)

2λ
,

where the first inequality comes from cancelling out ||u − wt||22 terms, the second inequality comes from
the assumption that ||gt||2 ≤ L, and the last inequality can be shown from the following fact that if f is

decreasing, then
∑l
i=k f(i) ≤

∫ l
k−1

f(x)dx, which is obvious from the following Figure 2.

3

Figure 2: Pictorial illustration of the inequality
∑k
i=k f(i) ≤

∫ l
k−1

f(x)dx if f is decreasing. The green part

area is
∫ l
k−1

f(x)dx by integral, which is larger than the area of blue boxes
∑k
i=k f(i).

In Theorem 1, the (sub)gradient gt is bounded. However, we can instantiate the result to unconstrained
regularized loss minimization by relating the (sub)gradient of ft(w) with the (sub)gradients of `(w, (xit , yit))
and λ

2 ||w||
2
2 to upper-bound gt. More specifically, it is easy to show that if f, g are convex, then for any w

and h = f + g, if a ∈ ∂f(w), b ∈ ∂g(w), then a + b ∈ ∂h(w). Therefore, the calculation of gt = ∂ft can be
decomposed into two steps:

- vt ∈ ∂`t(wt) = ∂`(wt, (xit , yit));

- gt = vt + λwt.

Then, updating wt would become wt+1 ← wt − 1
λt (λwt + vt) =

(
1− 1

t

)
wt − 1

λtvt. Therefore, we have

t · wt+1︸ ︷︷ ︸
At+1

= (t− 1)wt︸ ︷︷ ︸
At

− 1

λ
vt

=⇒ At+1 =

t∑
s=1

− 1

λ
vs (6)

=⇒ wt+1 = − 1

λt

t∑
s=1

vs

Now, coming back to the guarantee RT (Ω)
T = O

(
lnT
T

)
shown in Theorem 1, let us calculate the constant

factor inside O
(

lnT
T

)
for the unconstrained regularized loss minimization. Suppose additionally, that the

unregularized loss `t’s are B-Lipschitz w.r.t. ||·||2, then we have ||vt||2 ≤ B =⇒ ||wt||2 ≤ B
λ =⇒ gt = λwt+vt

satisfies ||gt||2 ≤ 2B for every t. Therefore, applying Theorem 1, we have ∀u ∈ Ω, RT (u) ≤ 2B2(lnT+1)
λ .

Then, from online-to-batch conversion, we have EFS(w̄T) − FS(ŵ) ≤ 2B2(lnT+1)
λT and setting T = Õ

(
B2

λε

)
ensures EFS(w̄T)− FS(ŵ) ≤ ε.

3 Kernel Methods

In this section, we provide a brief introduction to kernel methods. Suppose all examples are transformed
with a nonlinear map: φ : Rd → RN where N is large. The goal is to find w that approximately minimizes

1

m

m∑
i=1

f(yi 〈w, φ(xi)〉) +
λ

2
||w||22. (7)

However, as N is large, we would not like to maintain the iterates w ∈ RN explicitly. To tackle this issue,
a sliver lining is that 〈φ(x), φ(z)〉 = k(x, z), where k(x, z) is called the kernel function induced by φ, can be

4

evaluated efficiently. For example, for the polynomial kernel k(x, z) = (1+〈x, z〉)l, the φ inducing k(x, z) will
have N = O(dl) dimensions. However, we can evaluate k(x, z) very efficiently as we only need to calculate
〈x, z〉 that takes O(d) time and then take the power of l that takes O(1) time. The driving question is then:

Can we develop efficient training and test algorithms with running time independent from N?

The key observation is that since the loss functions have the structures in Equation (7), if we take
(sub)gradient of f w.r.t. w, the (sub)gradient will be always a scaling of some φ(xi). Then, from Equation (6),
we have that updating the iterates wt will require calculating the linear combination of φ(xit). Therefore,
instead of bookkeeping gt and wt, which are of high dimensions, we can keep track of coefficients αt ∈ Rm
of wt and maintain invariant that wt =

∑m
i=1 αt(i)φ(xi). Then, as m � N , the computation can be much

more efficient.
After getting the final iterate w =

∑m
i=1 α(i)φ(xi), the question now becomes how we shall make pre-

diction. It turns out that in the prediction stage, using the assumption that 〈φ(x), φ(z)〉 = k(x, z) we have
〈w, φ(x)〉 =

∑m
i=1 αi 〈φ(xi), φ(x)〉 =

∑m
i=1 αik(xi, x), which can be done efficiently.

In the next lecture, we will discuss in detail how we can modify Algorithm 3 so that instead of bookkeeping
wt’s, we keep track of αt’s to train the model and make prediction.

5

	Fast Algorithms for Regularized Loss Minimization
	OGD with Time-Varying Step Size
	Kernel Methods

