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Lecture 21: Proof of Online Mirror Descent
Lecturer: Chicheng Zhang Scribe: Yao Zhao

1 Guarantees of OMD

Online mirror descent provides a generalized form of the guarantee we found for OGD:

1.1 Regret for OMD

Theorem 1. If Ψ is 1-SC with respect to some norm ‖ · ‖, then OMD with distance generating function Ψ
and learning rate η has regret guarantee:

∀u ∈ Ω : RT (u) ≤ DΨ(u,w1)

η
+
η

2

T∑
t=1

‖gt‖2∗.

Specifically, if DΨ(u,w1) ≤ H2 and ∀t, ‖gt‖∗ ≤ ρ, then:

η =
H

ρ

√
1

T
=⇒ RT (u) ≤ Hρ

√
T .

Before moving on to the proof of this theorem, we first discuss several interesting examples, which were
first introduced in the last lecture.

Example 1: p-norm algorithm
Take Ω = Rd, Ψ(w) = 1

2(p−1)‖w‖
2
p, p ∈ (1, 2], which is convex. In addition, ‖ · ‖p and ‖ · ‖q are dual

norms, given

1

p
+

1

q
= 1.

Initialize w1 = 0 ∈ Rd. We have regret bound as follows,

∀u ∈ Ω : RT (u) ≤
‖u‖2p

2(p− 1)η
+
η

2

T∑
t=1

‖gt‖2q,

where, gt is the sub-gradient at wt. Furthermore, if ft is Rq-Lipschitz (∀t, ‖gt‖2q ≤ Rq) w.r.t. ‖ · ‖q, and
‖u‖p ≤ Bp. It then turns out,

∀u ∈ Ω : RT (u) ≤
B2
p

2(p− 1)η
+
η

2
TR2

q ,

Tuning the step size η, we have

∀u ∈ Ω : RT (u) ≤ BpRq

√
T

p− 1
,

when,

η =
Bp
Rq

√
1

(p− 1)T
.
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Especially, it reduces to OGD when p = 2.
Example 2: exponential weight algorithm
Take Ω = ∆d−1, Ψ(w) =

∑
i wi lnwi. The initialization is w1 = ( 1

d , ...
1
d ). We have

DΨ(u,w1) =
∑
i

ui ln
ui
1
d

≤ ln d,

where, the last inequality holds as ui ∈ [0, 1].
It then turns out,

∀u ∈ Ω : RT (u) ≤ ln d

η
+
η

2

T∑
t=1

‖gt‖2∞.

Furthermore, if ∀t, ‖gt‖2∞ ≤ R∞ then,

∀u ∈ Ω : RT (u) ≤ ln d

η
+
η

2
TR2
∞.

Tuning the step size η, we have

∀u ∈ Ω : RT (u) ≤ R∞
√
T ln d.

when,

η =
1

R∞

√
ln d

T
.

1.2 Proof of the regret bound

The proof follows the same procedure as OGD.

Proof. Step 1: linearization

RT (u) =

T∑
t=1

(ft(w1)− ft(u)) ≤
T∑
t=1

< gt,w1 − u > .

Step 2: first order optimality condition at wt+1,

wt+1 = arg min
w∈Ω

< ηgt,w > +DΨ(w,wt).

where, the two terms of right hand side correspond to correctiveness and conservativeness respectively.
The first order optimality condition tells us that

< ∇f(wt+1),u−wt+1 >≥ 0.

which means

〈∇Ψ(wt+1)−∇Ψ(wt) + ηgt,u−wt+1〉 ≥ 0

Thus,

〈gt,wt+1 − u〉 ≤ 1

η
〈u−wt+1,∇Ψ(wt+1)−∇Ψ(wt)〉

=
1

η
〈DΨ(u,wt)−DΨ(u,wt+1)−DΨ(wt+1,wt)〉.
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Step 3: bounding the instantaneous 〈gt,wt − u〉

〈gt,wt − u〉 = 〈gt,wt+1 − u〉+ 〈gt,wt −wt+1〉

=
η

2

T∑
t=1

‖gt‖2∗ +
1

η
(DΨ(u,wt)−DΨ(u,wt+1)).

Step 4: sum over t

RT (u) ≤
T∑
t=1

< gt,wt − u >

≤ η

2

T∑
t=1

‖gt‖2∗ +
1

η

T∑
t=1

(DΨ(u,wt)−DΨ(u,wt+1))

≤ η

2

T∑
t=1

‖gt‖2∗ +
1

η
DΨ(u,w1).

1.3 Example

A concrete example is provided here. Consider the weather prediction problem where there are d experts.
Take Ω = ∆d−1 and ft(w) = 〈w, lt〉. And ∀t, i = 1, . . . , d, lt(t) ∈ [0, 1]. How do we design OMD to minimize
Rt(Ω)? Here we illustrate the results with the following algorithms that we have seen before.

1. exponential weight algorithm,

RT (Ω) ≤ ln d

η
+ η

T∑
t=1

‖lt‖2∞ ≤ O(
√
T ln d).

2. online gradient decent,

RT (Ω) ≤ maxu,v∈Ω ‖u− v‖2

2η
+ η

T∑
t=1

‖lt‖22.

Where, the first term is bounded by a constant, and the second term is bounded by Tηd, which is tight
at (1, . . . , 1). By tuning the step size η, we regret bound of online gradient decent is upper bounded
by O(

√
Td).

3. p-norm algorithm,

Take p = ln d
ln d−1 and q = ln d.

RT (Ω) ≤
maxu∈Ω ‖u‖2p

2η(p− 1)
+
η

2

T∑
t=1

‖lt‖2q ≤
1

2η
(ln d− 1) +

η

2
e2T ≤ O(

√
ln d · T )

where, ‖lt‖2q =
(∑d

i=1 lt(i)
q
) 1

q ≤ d
1
q ≤ e
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2 Some more general OCO results

2.1 Design algorithm when T is unknown

1. Doubling trick. Suppose you are given an algorithm that accepts the horizon T as parameter and has
regret guarantee of a

√
T . Let T1 < T2 < . . . be a fixed sequence of integers and consider the algorithm

that runs with horizon T1 until t = T1, then runs with horizon T2 until t = T1 + T2, and then restart

again with horizon T1 until t = T1 +T2 +T3, where Tl+1 = 2Tl. The resulting regret bound is
√

2√
2−1

a
√
t.

2. Time-varying step size. By using step size ηt = H
ρ

√
1
t , we can achieve regret bound as O(Hρ

√
T ).

2.2 Optimality of regret guarantee

Theorem 2. Let Ω ∈ Rd be a convex set, and D = supu,v∈Ω ‖u − v‖2. For any algorithm A, and time
horizon T . Then there exists a sequence of linear functions ft(wt) = 〈gt,w〉, and ‖gt‖2 ≤ L, such that

RT (Ω) ≥ LD
√
T

4

This lower bounds shows that OGD is optimal for Ω, and assuming L-Lipschitz of the loss functions w.r.t.
‖ · ‖2.

We can also show a similar result for Ω ∈ ∆d−1, which means the exponential weight algorithm is optimal.

RT (Ω) ≥ const · L
√
T ln d

Here, we need the assumption that T is large enough, and ‖gt‖∞ ≤ L.
Caveat: This doesn’t rule out algorithms that can exploit ”easy data” or ”weak adversary”.

2.3 Follow the regularized leader

At each time step, t = 1, 2, ..., T :

– choose wt = arg minw∈Ω

∑t−1
s=1 fs(w) + Ψ(w)

η ;

– receive ft and suffer the loss ft(wt);

Intuitively, wt will oscillate a lot without regularization (η →∞, aka FTL), which induces large regret.
But with this regularization, the algorithm becomes stable and amenable for analysis.

Remark 3. Chicheng notes after lecture: sometimes people consider doing a first order approximation on
fs’s. This results in an OCO algorithm that only need to access the subgradients of the loss functions. This
is called Nesterov’s dual averaging. Specifically:

At each time step, t = 1, 2, ..., T :

– choose wt = arg minw∈Ω

∑t−1
s=1 〈gs, w〉+ Ψ(w)

η ;

– receive ft and suffer the loss ft(wt), receive gt ∈ ∂ft(wt);

In some setting of Ω and Ψ, FTRL may coincide with OMD,

wt = arg min
w∈Ω

t−1∑
s=1

〈gs,w〉+
Ψ(w)

η
= ∇Ψ∗Ω

(
−η

t−1∑
s=1

gs

)
.

Next lecture will be about exploiting strong convexity in online convex optimization.
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