Lecture 19: Analysis of online gradient descent;
 Online mirror descent: basic definitions

Lecturer: Chicheng Zhang
Scribe: Caleb Dahlke
(Thursday, March 25.)

1 Online optimization

1.1 Online (sub)gradient descent algorithm

Initialize $w_{1} \in \Omega$ and parameter η.
For $t=1,2, \ldots, T$:

- choose w_{t}
- Receive loss function f_{t}, suffer loss $f_{t}\left(w_{t}\right)$
- Set $g_{t} \in \partial f_{t}\left(w_{t}\right)$
- Update:

$$
\begin{aligned}
& w_{t+1}^{\prime} \leftarrow w_{t}-\eta g_{t} \quad(\eta>0) \\
& w_{t+1} \leftarrow \Pi_{\Omega}\left(w_{t+1}^{\prime}\right)=\operatorname{argmin}_{w \in \Omega}\left\|w-w_{t+1}^{\prime}\right\|_{2}
\end{aligned}
$$

Remark 1.

$$
w_{t+1}=\underset{w \in \Omega}{\operatorname{argmin}}\left\|w-w_{t}+\eta g_{t}\right\|_{2}^{2}=\underset{w \in \Omega}{\operatorname{argmin}}\left\langle w, \eta g_{t}\right\rangle+\frac{1}{2}\left\|w-w_{t}\right\|_{2}^{2}
$$

Here $\left\langle w, \eta g_{t}\right\rangle$ can be seen as the correctiveness and $\frac{1}{2}\left\|w-w_{t}\right\|_{2}^{2}$ is seen as the conservativeness. See (Kivinen \& Wamuth '97) for more information.

1.2 OGD Guarantees:

Theorem 2. $O G D w /$ initializer w_{1} and step size $\eta>0$ grantees $\forall u \in \Omega$

$$
R_{T}(u) \leq \frac{\left\|u-w_{1}\right\|_{2}^{2}}{2 \eta}+\frac{\eta}{2} \sum_{t=1}^{T}\left\|g_{t}\right\|_{2}^{2}
$$

Moreover, if Ω has ℓ_{2}-diameter $B\left(\forall u, v \in \Omega,\|u-v\|_{2} \leq B\right)$ and $\left\|g_{t}\right\|_{2} \leq \rho$ (which happens if all f_{t} 's are ρ-Lipshitz) then

$$
R_{T}(\Omega) \leq \frac{B^{2}}{2 \eta}+\frac{\eta}{2} T \rho^{2}
$$

Corollary 3. Under the above setting, $\ell(w, z)$ is ρ-Lipshitz w.r.t. $w, O G D$ with $f_{t}(w)=\ell\left(w, z_{t}\right)$ for i.i.d. $z_{1}, \ldots, z_{T} \sim D$ garuntees that $\bar{w}_{T}=\frac{1}{T} \sum_{t=1}^{T} w_{t}$

1. $\eta=\frac{B}{\rho} \sqrt{\frac{1}{T}} \Rightarrow \mathbb{E}\left[L_{D}\left(\bar{w}_{T}\right)\right] \leq \min _{w \in \Omega} L_{D}(w)+\frac{B \rho}{\sqrt{T}}$
2. $\eta=\frac{1}{\rho} \sqrt{\frac{1}{T}}, \Omega=\mathbb{R}^{d}, w_{1}=0 \Rightarrow \mathbb{E}\left[L_{D}\left(\bar{w}_{T}\right)\right] \leq L_{D}\left(w^{*}\right)+\frac{\left(\left\|w^{*}\right\|^{2}+1\right) \rho}{\sqrt{T}} \quad \forall w^{*} \in \mathbb{R}^{d}$

Proof. of Corollary
Last time, we showed a high probability upper bound on

$$
L_{D}\left(\bar{w}_{T}\right) \leq L_{D}\left(w^{*}\right)+\frac{R_{t}\left(\omega^{*}\right)}{T}+\text { Concentration }
$$

From the proof, we have the online regret garuntee of the following form

$$
\frac{1}{T} \sum_{t=1}^{T} \ell_{t}\left(w_{t}, z_{t}\right)-\frac{1}{T} \sum_{t=1}^{T} \ell_{t}\left(w^{*}, z_{t}\right) \leq R_{T}\left(w^{*}\right)
$$

Take the expectation of the LHS

$$
\mathbb{E}\left[\frac{1}{T} \sum_{t=1}^{T} \ell_{t}\left(w_{t}, z_{t}\right)-\frac{1}{T} \sum_{t=1}^{T} \ell_{t}\left(w^{*}, z_{t}\right)\right]=\mathbb{E}\left[\sum_{t=1}^{T} L_{D}\left(w_{T}\right)\right]-T L_{D}\left(w^{*}\right)
$$

Then using the expectation upper bound and Jensen's inequality as before, as well a the given regret grantees, then one can prove the corollary. This is left out of lecture.

Chicheng notes: see my newly added Mar 23 's scribe note, Remark 2, if the above is unclear.
Now let us come back to the Online Gradient Decent Grantees and prove Theorem 2
Proof. Step 1: "linearization"
To start we, know

$$
R_{T}(u)=\sum_{t=1}^{T}\left(f_{t}\left(w_{t}\right)-f_{t}(u)\right)
$$

we will bound $f_{t}(u)$ from below using the linearization shown in the following image

$$
f_{t}(n) \geqslant f_{t}\left(w_{t}\right)-\left(g_{t_{t}}, n-w_{t}\right)
$$

This means that we have the bound

$$
R_{T}(u)=\sum_{t=1}^{T}\left(f_{t}\left(w_{t}\right)-f_{t}(u)\right) \leq \sum_{t=1}^{T}\left\langle g_{t}, w_{t}-u\right\rangle
$$

Step 2: "use optimality condition on w_{t+1} "
First order optimallity condition:
f is convex and differentiable in convex domain Ω. Call $x^{*}=\operatorname{argmin}_{x \in \Omega} f(x)$. Then we have two cases

1. x^{*} is in the interior of Ω, then $\nabla f\left(x^{*}\right)=0$ (if it weren't, we could walk in the direction of negative gradient to decrease the objective function, but this is assumed minimum)

2. x^{*} is in the boundary of Ω, we need $\forall y \in \Omega\left\langle\nabla f\left(x^{*}\right), y-x^{*}\right\rangle \geq 0$. Below is an illustration showing that with this condition, moving anywhere along the negative gradient would push us out of Ω

We can combine the two cases for the final result

$$
x^{*}=\underset{x \in \Omega}{\operatorname{argmin}} f(x) \Leftrightarrow \forall y \in \Omega,\left\langle\nabla f\left(x^{*}\right), y-x^{*}\right\rangle \geq 0
$$

The proof of this statement is omitted, but the outline is below

Idea of proof:

(\Rightarrow) if $\exists y\left\langle\nabla f\left(x^{*}\right), y-x^{*}\right\rangle<0$

$$
f\left(x^{*}+\alpha\left(y-x^{*}\right)\right)=f\left(x^{*}\right)+\alpha\left\langle\nabla f\left(x^{*}\right), y-x^{*}\right\rangle+o(\alpha)<f\left(x^{*}\right)(\text { for small } \alpha>0)
$$

$(\Leftarrow) \forall y$

$$
f(y) \geq f\left(x^{*}\right)+\left\langle\nabla f\left(x^{*}\right), y-x^{*}\right\rangle \geq 0
$$

The details to this need to be filled out.
Now lets apply this optimallity condition to the OGD, recall

$$
w_{t+1}=\underset{w \in \Omega}{\operatorname{argmin}}\left\langle\eta g_{t}, w\right\rangle+\frac{1}{2}\left\|w-w_{t}\right\|^{2}
$$

First order optimallity

$$
\left\langle\eta g_{t}+w_{t+1}-w_{t}, u-w_{t+1}\right\rangle \geq 0 \forall u \in \Omega
$$

Now rewriting the above, we get

$$
\left\langle g_{t}, w_{t+1}-u\right\rangle \leq \frac{1}{\eta}\left\langle w_{t+1}-w_{t}, u-w_{t+1}\right\rangle
$$

We can now use the fact that $\langle a, b\rangle=\frac{1}{2}\left(\|a+b\|^{2}-\|a\|-\|b\|\right)$

$$
\left\langle g_{t}, w_{t+1}-u\right\rangle \leq \frac{1}{\eta}\left\langle w_{t+1}-w_{t}, u-w_{t+1}\right\rangle=\frac{1}{2 \eta}\left(\left\|u-w_{t}\right\|^{2}-\left\|u-w_{t+1}\right\|^{2}-\left\|w_{t+1}-w_{t}\right\|^{2}\right)
$$

Step 3: "Bounding $\left\langle g_{t}, w_{t}-u\right\rangle "$

$$
\left\langle g_{t}, w_{t}-u\right\rangle=\left\langle g_{t}, w_{t+1}-u\right\rangle+\left\langle g_{t}, w_{t}-w_{t+1}\right\rangle
$$

We will now use Cauchy-Schwarz on the second term $\left\langle g_{t}, w_{t}-w_{t+1}\right\rangle \leq\left\|g_{t}\right\|\left\|w_{t}-w_{t+1}\right\|$ and then we can use the geometric mean of these two numbers, that is $\left\|g_{t}\right\|\left\|w_{t}-w_{t+1}\right\|=\eta_{2}\left\|g_{t}\right\|_{2}^{2}+\frac{1}{2 \eta}\left\|w_{t}-w_{t+1}\right\|_{2}^{2}$.

$$
\left\langle g_{t}, w_{t+1}-u\right\rangle+\left\langle g_{t}, w_{t}-w_{t+1}\right\rangle \leq\left\langle g_{t}, w_{t+1}-u\right\rangle+\eta_{2}\left\|g_{t}\right\|_{2}^{2}+\frac{1}{2 \eta}\left\|w_{t}-w_{t+1}\right\|_{2}^{2}
$$

Using the upper bound we developed in the previous step

$$
\left\langle g_{t}, w_{t+1}-u\right\rangle+\eta_{2}\left\|g_{t}\right\|_{2}^{2}+\frac{1}{2 \eta}\left\|w_{t}-w_{t+1}\right\|_{2}^{2} \leq \frac{\eta}{2}\left\|g_{t}\right\|_{2}^{2}+\frac{1}{2 \eta}\left(\left\|u-w_{t}\right\|^{2}-\left\|u-w_{t+1}\right\|^{2}\right)
$$

Combining these parts together, we get

$$
\left\langle g_{t}, w_{t}-u\right\rangle \leq \frac{\eta}{2}\left\|g_{t}\right\|_{2}^{2}+\frac{1}{2 \eta}\left(\left\|u-w_{t}\right\|^{2}-\left\|u-w_{t+1}\right\|^{2}\right)
$$

This can be interpreted as if we have a large instantaneous regret then the iterate will be closer to the comparitor.
Step 4: "sum over t "

$$
\sum_{t=1}^{T}\left\langle g_{t}, w_{t}-u\right\rangle \leq \frac{\eta}{2} \sum_{t=1}^{T}\left\|g_{t}\right\|_{2}^{2}+\frac{1}{2 \eta} \sum_{t=1}^{T}\left(\left\|u-w_{t}\right\|^{2}-\left\|u-w_{t+1}\right\|^{2}\right)
$$

By telescoping of the term in the second sum, we can cancel all the terms except the first (as ever other term will appear with a positive and then a negative sign) and dropping the final term, we are left with

$$
\sum_{t=1}^{T}\left\langle g_{t}, w_{t}-u\right\rangle \leq \frac{\eta}{2} \sum_{t=1}^{T}\left\|g_{t}\right\|_{2}^{2}+\frac{1}{2 \eta}\left\|u-w_{1}\right\|^{2}
$$

2 Online Mirror Descent

Motivating Question:
$\overline{\text { Can we develop algorithms with regrets that scale with other geometric measures of data (e.g. } \ell_{\infty}, \ell_{1} \text {, etc.)? }}$

2.1 Background on norms

Definition 4. A function, $\|\cdot\|,\left(\mathbb{R}^{D} \rightarrow \mathbb{R}\right)$ is said to be a norm if

1. Homogeneity: $\forall a \in \mathbb{R}$ and $x \in \mathbb{R}^{d}$, then $\|a x\|=|a|\|x\|$
2. Triangle Inequality: $\forall x, y \in \mathbb{R}^{d},\|x+y\| \leq\|x\|+\|y\|$
3. Point Separation: $\|x\|=0 \Rightarrow x=\overrightarrow{0}$

Examples

1. $\|x\|_{2}=\sqrt{x_{1}^{2}+\cdots+x_{d}^{2}}$
2. $\|x\|_{\infty}=\max _{i}\left|x_{i}\right|$
3. $\|x\|_{p}=\left(\sum_{i=1}^{p}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}$
4. Mahalanobis Norm: A is positive definite $A=P P^{T}$ for invertible P

$$
\|x\|_{A}=\sqrt{x^{T} A x}=\sqrt{x^{T} P P^{T} x}=\left\|P^{T} x\right\|_{2}
$$

Definition 5. Given a norm, $\|\cdot\|$, define the dual norm, $\|\cdot\|_{*}$, as

$$
\|z\|_{*}=\sup _{x:\|x\| \leq 1}\langle x, z\rangle
$$

| \\| • \| | $\\|\cdot\\|$ * | | | | | | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| $\begin{gathered} \\|\cdot\\|_{2} \\ \\|\cdot\\|_{1} \\ \\|\cdot\\|_{p} \in[1, \infty] \\ \\|\cdot\\|_{A} \end{gathered}$ | $\begin{gathered} \\|\cdot\\|_{2} \\ \\|\cdot\\|_{q} \\ \\|\cdot\\|_{\infty}^{q}\left(\frac{1}{q}+\frac{1}{p}=1\right) \\ \\ \\|\cdot\\|_{A^{-1}} \end{gathered}$ |

Table 1: List of Norms on the left and their paired Dual Norm on the right

1. $\|\cdot\|_{*}$ is also a norm
2. By definition of dual norm,

$$
\langle x, z\rangle=\|x\|\left\langle\frac{x}{\|x\|}, z\right\rangle \leq\|x\|\| \| z \|_{*}
$$

This generalizes Cauchy-Schwarz

Examples

2.2 General Lipshitz Property (w.r.t. arbitrary norm)

Recall: $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is L-Lip w.r.t. $\|\cdot\|$ if $\forall x, y|f(x)-f(y)| \leq L\|x-y\|$

Lemma 6. Relating Lipshitzness to gradient norm

1. $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is differentiable, then f is L-Lip w.r.t. $\|\cdot\| \Leftrightarrow \forall x\|\nabla f(x)\|_{*} \leq L$
2. $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is convex, then f is L-Lip w.r.t. $\|\cdot\| \Leftrightarrow \forall x \forall g \in \partial f(x),\|g\|_{*} \leq L$

Proof. 1. Left as an exercise, proof uses ideas similar to part 2
2. $(\Rightarrow) \forall x \forall g \in \partial f(x)$ we have $\forall y$

$$
f(y) \geq f(x)+\langle g, y-x\rangle
$$

Now pick g^{*} s.t. $\left\|g^{*}\right\| \leq 1$ and $\left\langle g, g^{*}\right\rangle=\|g\|_{*}$ and let $y=x+g^{*}$, then

$$
\|g\|_{*}=\left\langle g, g^{*}\right\rangle=\langle g, y-x\rangle \leq f(y)-f(x) \leq L\|y-x\|=L\left\|g^{*}\right\| \leq L
$$

$(\Leftarrow) \forall x, y$ and $g_{y} \in \partial f(y), g_{x} \in \partial f(x)$

$$
-L\|x-y\| \leq\left\langle g_{y}, x-y\right\rangle \leq f(x)-f(y) \leq\left\langle g_{x}, x-y\right\rangle \leq L\|x-y\|
$$

2.3 Strong Convexity (for arbitrary norm)

Recall: f is λ-Strongly Convex (sc) if $\forall u, w$ and $\alpha \in(0,1)$

$$
f(\alpha w+(1-\alpha) u) \leq \alpha f(w)+(1-\alpha) f(u)-\frac{\lambda}{2} \alpha(1-\alpha)\|w-u\|^{2}
$$

This second term is a gap that can be visualized in the following picture

Lemma 7. If f is $\lambda-S C$, then $\forall u, w$ and $\forall g \in \partial f(u)$,

$$
f(w)-f(u) \geq\langle g, w-u\rangle+\frac{\lambda}{2}\|w-u\|^{2}
$$

Proof. Let us start by using the definition of λ-SC
$\frac{f(\alpha w+(1-\alpha) u)-f(u)}{\alpha} \leq \frac{\alpha f(w)+(1-\alpha) f(u)-\frac{\lambda}{2} \alpha(1-\alpha)\|w-u\|^{2}-f(u)}{\alpha}=f(w)-f(u)-\frac{\lambda}{2}(1-\alpha)\|w-u\|^{2}$
Now we can lower bound the LHS by using the sub-gradient at point u, denoted as g

$$
\frac{f(\alpha w+(1-\alpha) u)-f(u)}{\alpha} \geq \frac{\langle g, \alpha(w-u)\rangle}{\alpha}=\langle g, w-u\rangle
$$

Combining these two, we get

$$
\langle g, w-u\rangle \leq f(w)-f(u)-\frac{\lambda}{2}(1-\alpha)\|w-u\|^{2}
$$

Which holds for all α. Pick $\alpha=0$

$$
\langle g, w-u\rangle \leq f(w)-f(u)-\frac{\lambda}{2}\|w-u\|^{2}
$$

Which is an alternative statement of the lemma
Definition 8. If ψ is differentiable and strongly convex, then

$$
D_{\psi}(x, y)=\psi(x)-\psi(y)-\langle\nabla \psi(y), x-y\rangle
$$

is called the Bregman Divergence induced by ψ.
Next time: we will look at Online Mirror Descent

$$
w_{t+1}=\underset{w \in \Omega}{\operatorname{argmin}}\left\langle\eta g_{t}, w\right\rangle+D_{\psi}\left(w, w_{t}\right)
$$

