
CSC 588: Machine learning theory Spring 2021

Lecture 19: Analysis of online gradient descent;

Online mirror descent: basic definitions
Lecturer: Chicheng Zhang Scribe: Caleb Dahlke

(Thursday, March 25.)

1 Online optimization

1.1 Online (sub)gradient descent algorithm

Initialize w1 ∈ Ω and parameter η.
For t = 1, 2, . . . , T :

- choose wt

- Receive loss function ft, suffer loss ft(wt)

- Set gt ∈ ∂ft(wt)

- Update:

w′t+1 ← wt − ηgt (η > 0)

wt+1 ← ΠΩ(w′t+1) = argminw∈Ω ‖w − w′t+1‖2

Remark 1.

wt+1 = argmin
w∈Ω

||w − wt + ηgt||22 = argmin
w∈Ω

〈w, ηgt〉+
1

2
||w − wt||22

Here 〈w, ηgt〉 can be seen as the correctiveness and 1
2 ||w−wt||

2
2 is seen as the conservativeness. See (Kivinen

& Wamuth ’97) for more information.

1.2 OGD Guarantees:

Theorem 2. OGD w/ initializer w1 and step size η > 0 grantees ∀u ∈ Ω

RT (u) ≤ ||u− w1||22
2η

+
η

2

T∑
t=1

||gt||22

Moreover, if Ω has `2-diameter B (∀u, v ∈ Ω, ||u − v||2 ≤ B) and ||gt||2 ≤ ρ (which happens if all ft’s are
ρ-Lipshitz) then

RT (Ω) ≤ B2

2η
+
η

2
Tρ2

Corollary 3. Under the above setting, `(w, z) is ρ-Lipshitz w.r.t. w, OGD with ft(w) = `(w, zt) for i.i.d.

z1, . . . , zT ∼ D garuntees that wT = 1
T

∑T
t=1 wt

1. η =
B

ρ

√
1

T
⇒ E[LD(wT )] ≤ minw∈Ω LD(w) +

Bρ√
T

2. η =
1

ρ

√
1

T
,Ω = Rd, w1 = 0⇒ E[LD(wT )] ≤ LD(w∗) +

(||w∗||2 + 1)ρ√
T

∀w∗ ∈ Rd
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Proof. of Corollary
Last time, we showed a high probability upper bound on

LD(wT ) ≤ LD(w∗) +
Rt(ω

∗)

T
+ Concentration

From the proof, we have the online regret garuntee of the following form

1

T

T∑
t=1

`t(wt, zt)−
1

T

T∑
t=1

`t(w
∗, zt) ≤ RT (w∗)

Take the expectation of the LHS

E[
1

T

T∑
t=1

`t(wt, zt)−
1

T

T∑
t=1

`t(w
∗, zt)] = E[

T∑
t=1

LD(wT )]− TLD(w∗)

Then using the expectation upper bound and Jensen’s inequality as before, as well a the given regret grantees,
then one can prove the corollary. This is left out of lecture.

Chicheng notes: see my newly added Mar 23’s scribe note, Remark 2, if the above is unclear.

Now let us come back to the Online Gradient Decent Grantees and prove Theorem 2

Proof. Step 1: ”linearization”
To start we, know

RT (u) =

T∑
t=1

(ft(wt)− ft(u))

we will bound ft(u) from below using the linearization shown in the following image

This means that we have the bound

RT (u) =

T∑
t=1

(ft(wt)− ft(u)) ≤
T∑
t=1

〈gt, wt − u〉

Step 2: ”use optimality condition on wt+1”
First order optimallity condition:
f is convex and differentiable in convex domain Ω. Call x∗ = argminx∈Ω f(x) . Then we have two cases

1. x∗ is in the interior of Ω, then ∇f(x∗) = 0 (if it weren’t, we could walk in the direction of negative
gradient to decrease the objective function, but this is assumed minimum)
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2. x∗ is in the boundary of Ω, we need ∀y ∈ Ω 〈∇f(x∗), y − x∗〉 ≥ 0. Below is an illustration showing
that with this condition, moving anywhere along the negative gradient would push us out of Ω

We can combine the two cases for the final result

x∗ = argmin
x∈Ω

f(x)⇔ ∀y ∈ Ω, 〈∇f(x∗), y − x∗〉 ≥ 0

The proof of this statement is omitted, but the outline is below
Idea of proof:
(⇒) if ∃y 〈∇f(x∗), y − x∗〉 < 0

f(x∗ + α(y − x∗)) = f(x∗) + α〈∇f(x∗), y − x∗〉+ o(α) < f(x∗) (for small α > 0)

(⇐) ∀y
f(y) ≥ f(x∗) + 〈∇f(x∗), y − x∗〉 ≥ 0

The details to this need to be filled out.
Now lets apply this optimallity condition to the OGD, recall

wt+1 = argmin
w∈Ω

〈ηgt, w〉+
1

2
||w − wt||2

First order optimallity
〈ηgt + wt+1 − wt, u− wt+1〉 ≥ 0∀u ∈ Ω

Now rewriting the above, we get

〈gt, wt+1 − u〉 ≤
1

η
〈wt+1 − wt, u− wt+1〉

We can now use the fact that 〈a, b〉 = 1
2

(
||a+ b||2 − ||a|| − ||b||

)
〈gt, wt+1 − u〉 ≤

1

η
〈wt+1 − wt, u− wt+1〉 =

1

2η

(
||u− wt||2 − ||u− wt+1||2 − ||wt+1 − wt||2

)
Step 3: ”Bounding 〈gt, wt − u〉”

〈gt, wt − u〉 = 〈gt, wt+1 − u〉+ 〈gt, wt − wt+1〉

We will now use Cauchy-Schwarz on the second term 〈gt, wt − wt+1〉 ≤ ||gt||||wt − wt+1|| and then we can
use the geometric mean of these two numbers, that is ||gt||||wt − wt+1|| = η2||gt||22 + 1

2η ||wt − wt+1||22.

〈gt, wt+1 − u〉+ 〈gt, wt − wt+1〉 ≤ 〈gt, wt+1 − u〉+ η2||gt||22 +
1

2η
||wt − wt+1||22
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Using the upper bound we developed in the previous step

〈gt, wt+1 − u〉+ η2||gt||22 +
1

2η
||wt − wt+1||22 ≤

η

2
||gt||22 +

1

2η

(
||u− wt||2 − ||u− wt+1||2

)
Combining these parts together, we get

〈gt, wt − u〉 ≤
η

2
||gt||22 +

1

2η

(
||u− wt||2 − ||u− wt+1||2

)
This can be interpreted as if we have a large instantaneous regret then the iterate will be closer to the
comparitor.
Step 4: ”sum over t”

T∑
t=1

〈gt, wt − u〉 ≤
η

2

T∑
t=1

||gt||22 +
1

2η

T∑
t=1

(
||u− wt||2 − ||u− wt+1||2

)
By telescoping of the term in the second sum, we can cancel all the terms except the first (as ever other
term will appear with a positive and then a negative sign) and dropping the final term, we are left with

T∑
t=1

〈gt, wt − u〉 ≤
η

2

T∑
t=1

||gt||22 +
1

2η
||u− w1||2

2 Online Mirror Descent

Motivating Question:
Can we develop algorithms with regrets that scale with other geometric measures of data (e.g. `∞,`1, etc.)?

2.1 Background on norms

Definition 4. A function, || · ||, (RD → R) is said to be a norm if

1. Homogeneity: ∀a ∈ R and x ∈ Rd, then ||ax|| = |a|||x||

2. Triangle Inequality: ∀x, y ∈ Rd, ||x+ y|| ≤ ||x||+ ||y||

3. Point Separation: ||x|| = 0⇒ x = ~0

Examples

1. ||x||2 =
√
x2

1 + · · ·+ x2
d

2. ||x||∞ = maxi |xi|

3. ||x||p = (
∑p
i=1 |xi|p)

1
p

4. Mahalanobis Norm: A is positive definite A = PPT for invertible P

||x||A =
√
xTAx =

√
xTPPTx = ||PTx||2

Definition 5. Given a norm, || · ||, define the dual norm, || · ||∗, as

||z||∗ = sup
x:||x||≤1

〈x, z〉
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|| · || || · ||∗

|| · ||2 || · ||2
|| · ||1 || · ||∞

|| · ||p p ∈ [1,∞] || · ||q ( 1
q + 1

p = 1)

|| · ||A || · ||A−1

Table 1: List of Norms on the left and their paired Dual Norm on the right

1. || · ||∗ is also a norm

2. By definition of dual norm,

〈x, z〉 = ||x||
〈

x

||x||
, z

〉
≤ ||x||||z||∗

This generalizes Cauchy-Schwarz

Examples

2.2 General Lipshitz Property (w.r.t. arbitrary norm)

Recall: f : Rd → R is L-Lip w.r.t. || · || if ∀x, y |f(x)− f(y)| ≤ L||x− y||

Lemma 6. Relating Lipshitzness to gradient norm

1. f : Rd → R is differentiable, then f is L-Lip w.r.t. || · || ⇔ ∀x ||∇f(x)||∗ ≤ L

2. f : Rd → R is convex, then f is L-Lip w.r.t. || · || ⇔ ∀x∀g ∈ ∂f(x), ||g||∗ ≤ L

Proof. 1. Left as an exercise, proof uses ideas similar to part 2

2. (⇒) ∀x∀g ∈ ∂f(x) we have ∀y
f(y) ≥ f(x) + 〈g, y − x〉

Now pick g∗ s.t. ||g∗|| ≤ 1 and 〈g, g∗〉 = ||g||∗ and let y = x+ g∗, then

||g||∗ = 〈g, g∗〉 = 〈g, y − x〉 ≤ f(y)− f(x) ≤ L||y − x|| = L||g∗|| ≤ L

(⇐) ∀x, y and gy ∈ ∂f(y), gx ∈ ∂f(x)

−L||x− y|| ≤ 〈gy, x− y〉 ≤ f(x)− f(y) ≤ 〈gx, x− y〉 ≤ L||x− y||

2.3 Strong Convexity (for arbitrary norm)

Recall: f is λ-Strongly Convex (sc) if ∀u,w and α ∈ (0, 1)

f(αw + (1− α)u) ≤ αf(w) + (1− α)f(u)− λ

2
α(1− α)||w − u||2

This second term is a gap that can be visualized in the following picture
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Lemma 7. If f is λ-SC, then ∀u,w and ∀g ∈ ∂f(u),

f(w)− f(u) ≥ 〈g, w − u〉+
λ

2
||w − u||2

Proof. Let us start by using the definition of λ-SC

f(αw + (1− α)u)− f(u)

α
≤
αf(w) + (1− α)f(u)− λ

2α(1− α)||w − u||2 − f(u)

α
= f(w)−f(u)−λ

2
(1−α)||w−u||2

Now we can lower bound the LHS by using the sub-gradient at point u, denoted as g

f(αw + (1− α)u)− f(u)

α
≥ 〈g, α(w − u)〉

α
= 〈g, w − u〉

Combining these two, we get

〈g, w − u〉 ≤ f(w)− f(u)− λ

2
(1− α)||w − u||2

Which holds for all α. Pick α = 0

〈g, w − u〉 ≤ f(w)− f(u)− λ

2
||w − u||2

Which is an alternative statement of the lemma

Definition 8. If ψ is differentiable and strongly convex, then

Dψ(x, y) = ψ(x)− ψ(y)− 〈∇ψ(y), x− y〉

is called the Bregman Divergence induced by ψ.

Next time: we will look at Online Mirror Descent

wt+1 = argmin
w∈Ω

〈ηgt, w〉+Dψ(w,wt)
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