
CSC 588: Machine learning theory Spring 2021

Lecture 18: Online to batch conversion; Azuma’s Inequality;

online gradient descent
Lecturer: Chicheng Zhang Scribe: Sheldon Deeny

(Tuesday, March 23.)

1 Online optimization

Think of the interaction between learner and environment (i.e a 2-player game).
Our setting is:

- decision set Ω, or action space (often convex).

For t = 1, 2, . . . , T :

- learner picks wt ∈ Ω

- environment picks loss function: ft : Ω 7→ R.

- learner suffers loss ft(wt)

The goal of the learner is to minimize the cumulative loss. A special case of online optimization is online
convex optimization, where Ω is a convex set and the ft are convex functions.

Key performance measure is regret. It is the difference between the cumulative loss of the learner, and
the cumulative loss of some fixed action (or predictor) u:

RT (u) :=

T∑
t=1

ft(wt)−
T∑
t=1

ft(u)

RT (Ω) := max
u∈Ω

RT (u)

Our goal for the learning algorithm is to achieve sublinear regret, e.g. we want RT (u) to be o(T), or
RT /T → 0. Achieving regret sublinear in time has important implications in statistical learning.

2 Online vs. statistical learning

Recall the basic set-up of statistical learning:

- Training samples chosen iid from distribution D:

S = (z1, . . . , zT)
iid∼ D

- We have a learning algorithm which maps the samples to a predictor:

ŵ = A(S)

- The set of predictors that the learning algorithm chooses from is Ω: some hypothesis class.

- Loss function: `(w, z). Performance of predictor w on example z.

1

- Goal of statistical learning: generate an algorithm which outputs predictor with a low “population”
loss, in the sense:

LD(ŵ) = Ez∼D`(ŵ, z) = some small amount

- The excess loss is defined as LD(ŵ) − LD(w∗), i.e. the difference in the loss of the output classifier
and best classifier in the class,

w∗ = argmin
w∈Ω

LD(w).

We want this excess loss to be o(1) i.e. → 0 when T →∞.

2.1 Differences from statistical learning:

- Online learning doesn’t necessarily make iid distribution assumption. The environment may potentially
pick the loss function which can be adaptive to the previous choices of the learners action.

- Sometimes online learning algorithms are more computationally efficient because they use a “fast
update rule.”

Connection: online to batch conversion

- What this means is that a statistical learning task can be reduced to an online learning task.

- More specifically, given some online learning algorithm with good regret guarantees, it can be used to
construct a statistical learning algorithm with a good excess loss guarantee.

How can this be achieved? How should we define the loss?

Algorithm:

- Inputs: (z1, . . . , zT)
iid∼ D, online learning algorithm A, action space Ω

- For t = 1, . . . , T :

A outputs wt.

ft(w) = `(w, zt) is loss induced by example t.

- The learning algorithm generates w1, . . . , wT , and outputs

ŵ =
1

T

T∑
t=1

wt

The regret guarantees of A on u:

1

T
RT (u) =

1

T

T∑
t=1

`(wt, zt)−
1

T

T∑
t=1

`(u, zt) = o(1)

Key observation: (assume loss is unbounded) we have

T∑
t=1

`(u, zt)→ LD(u) (the population loss)

by Hoeffding’s inequality. Also, each wt only depends on the previous t− 1 examples, which is independent
from the new example zt. This (heuristically) suggests that each the `(wt, zt) is an unbiased estimator of the
generalization loss LD(wt). We can conclude that the average generalization losses of these iterates will be

2

competitive with the generalization loss of any other predictor (assume regret does not depend on u). This
justifies the output ŵ of the above algorithm.

Assuming LD(w) is convex (since `(w, z) is convex for all z, and expectation is convex), can conclude

LD(ŵ) ≤ 1

T

T∑
t=1

LD(wt) ≤ LD(u) +
RT (u)

T
+ concentration factors (sublinear in T).

Theorem 1. Assume `(w, z) ∈ [0, B] is convex in w, then with probability 1− δ:

LD(w̄) ≤ LD(w∗) +
RT (w∗)

T
+ 2B

√
2 ln(4/δ)

T

for all w∗ ∈ Ω, where w̄ is the average predictor.

Remark 2. Chicheng notes after the lecture: there is another useful and simpler guarantee one can show
on the expected loss of the average predictor w̄:

ELD(w̄) ≤ LD(w?) +
E[RT (w?)]

T
. (1)

On the left hand side, w̄ is a random variable, as it depends on the random examples z1, . . . , zT . To see this
inequality, we recall that by the definition of regret,

1

T

T∑
t=1

`(wt, zt)−
1

T

T∑
t=1

`(w?, zt) =
RT (w?)

T

Now, taking expectations on both sides: by the law of iterated expectation, for every t, we have E [`(wt, zt)] =
E [E [`(wt, zt) | wt]] = ELD(wt). Therefore, we have

E

[
1

T

T∑
t=1

LD(wt)

]
− LD(w?) =

E [RT (w?)]

T
.

Equation (1) now follows directly by Jensen’s inequality.

Proof. Use Hoeffding’s inequality, which implies with probability 1− δ/2:∣∣∣∣∣ 1

T

T∑
t=1

`(w∗, zt)− LD(w∗)

∣∣∣∣∣ ≤ B
√

2 ln(4/δ)

T
(2)

On the other hand, we need to establish the concentration of the online losses to the “online population
loss”: 1

T

∑T
t=1 LD(wt). Need to look at

1

T

T∑
t=1

`(wt, zt)−
1

T

T∑
t=1

LD(wt)

We don’t yet have the tools to compare this quantity, because it is not necessarily the case that our ran-
dom variables are iid: `(wt, zt) may not be independent from `(wt−1, zt−1). But, as discussed above, wt
heuristically only depends on the previous examples, so the zt still serves as a fresh example to wt. Thus, in
expectation, `(wt, zt) will still concentrate around the generalization loss, LD(wt). To bound these types of
quantities, we use a new concentration inequality:

3

Theorem 3 (Azuma’s inequality(a generalization of Hoeffding)). Given random variables X1, . . . , XT ∈
[−B,B], where B > 0, and E[Xt] = 0. Assume for all t,

E[Xt|X1, . . . , Xt−1] = 0

(i.e. X1, . . . , XT is a martingale difference sequence). Then with probability 1− δ:∣∣∣∣∣
T∑
t−1

Xt

∣∣∣∣∣ ≤ B√2T ln 2/δ

(which is essentially the guarantee of Hoeffding’s inequality).

Using Azuma, have Xt = `(wt, zt)−LD(wt) ∈ [−B,B]. This satisfies the martingale difference sequence
property, since

E[Xt | all observations up to t− 1 and wt] = 0

Thus, with probability 1− δ/2:∣∣∣∣∣ 1

T

T∑
t=1

`(wt, zt)−
1

T

T∑
t=1

LD(wt)

∣∣∣∣∣ ≤ B
√

2 ln(4/δ)

T

If the above and (1) happen simultaneously, use union bound and algebra to show upper bound of average
predictor.

Example 1. (Gambling) Let c1, . . . , dT
iid∼ U(±1) be Rademacher random variables. At each time t, can

place a bet that Xt ∈ [−B,B] (at each time step, have a fixed budget) depends on previous observations
c1, . . . , ct−1. Think of sign(Xt) as the side of the coin ct being bet on, and |Xt| is the amount of money being
bet on ct. The profit at round t is ctXt = zt. Applying Azuma’s inequality in this gambling setting, can
guarantee with high probability

T∑
t=1

zt ∈ [±B
√
T]

i.e. the cumulative profit of the gambler is in the interval with high probability, i.e. the gambler doesn’t
lose/gain too quickly.

Now we prove Azuma’s inquality by applying the law of iterative expectation:

Proof. (Azuma’s Inequality) Verify that the sum of X1, . . . , XT has zero mean:

E

[
T∑
t=1

Xt

]
= E
X1,...,XT−1

[
E
XT

[
T∑
t=1

Xt

]]

= E
T−1∑
t=1

Xt

...

= 0.

If we condition on the first T − 1 random variable’s, only the last term in the sum
∑T
t=1Xt is random,

and that random variable has mean zero, so the inner expectation simplifies to
∑T−1
t=1 Xt by the Martingale

difference sequence property. Apply repeatedly to arrive at EX1 = 0.
Next, verify that

∑T
t=1Xt is σ2-sub-Gaussian. Moment generating function: for every λ,

4

E
[
eλ

∑T
t=1Xt

]
= E
X1,...,XT−1

[
E
XT

[
eλ

∑T−1
t=1 XteλXT

]]

Because we condition (“integrate out”) the first T − 1 random variables, the eλ
∑T−1
t=1 term can be ignored

when taking the expectation over XT . Apply the inequality: if Z is supported on [a, b], then

EeλZ ≤ eλ
2

2
(b−a)2

4

(Chicheng notes: conditioned on any realizations of X1, . . . , XT−1, the distributional law of Xt has mean
zero and has range [−B,B].) Taking b = B and a = −B, continuing from above, we can repeat the process
and arrive at:

. . . ≤ E
[
eλ

∑T−1
t=1 Xte

λ2

2 B
2
]

≤ . . .

≤ eλ
2

2 TB
2

where T is the number of iterations. Since the sub-Gaussian random variables Xt have the exponential (i.e.
“light-tailed”) property, we can conclude the result of Azuma’s inequality.

In conclusion, we have shown that applying the above concentration inequalities, by letting the online
learning algorithm receive the loss function induced by the iid samples and output the average predictor, this
yields a statistical learning algorithm that has excess loss guarantee that depends on the regret guarantee of
the corresponding online learning algorithm.

3 Algorithms for online learning/optimization

Given the online learning setup at the beginning of these notes, how can we design an algorithm to choose
the actions wt? Recall that up to time t, we have collected the previous t−1 predictors w and loss functions
f . One idea is to take the greedy approach and just pick the best, i.e. wt = argminw∈Ω

∑t−1
s=1 fs(w) this is

called “follow the leader”.
How could we be efficient, in the sense that we build wt from the previous w1, . . . , wt−1?

3.1 Online gradient descent

Motivation: consider a loss function in terms of logistic regression, i.e.

`(w, (x, y)) = ln
(

1 + e−y〈w,x〉
)
.

Given iid (xi, yi)
iid∼ D, using excess loss guarantee derived above, can we use online learning and online to

batch conversion to develop algorithms that can output a predictor ŵ with a small expected loss, LD(ŵ)?
Can we make the procedure update as fast/efficient as possible? To discuss the idea of gradient descent, we
review some basic convexity definitions and results...

3.2 Convex function basics

Recall: a function f is convex in domain Ω (which is a convex set), if, for all x, y ∈ Ω, α ∈ (0, 1),

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y)

Also, for all x ∈ Ω, we have f(x) ∈ R.
Examples of convex functions:

5

- Affine functions: f(w) = 〈a,w〉+ b.

- Norms: ‖w‖2

- Strongly convex (c.f. stability lecture): f(w) = 1
2‖w‖

2
2 is 1-strongly convex, which implies convex

Basic properties of convex functions:

• f, g convex, α, β > 0, =⇒ αf + βg is also convex (check: straightforward application of definitions)

• f is convex implies g(x) = f(Ax+ b) is convex, where A is a matrix and b a vector.

• f1, . . . , fn convex =⇒ g(x) maxi fi(x) is convex, i.e. pointwise max of convex functions is convex.

By the 2nd-order Taylor expansion and convexity of f , we have f(u) ≥ f(w) + 〈∇f(w), u− w〉.

Definition 4. (Subgradient) If f is convex on Ω, then for “almost all” points x ∈ Ω, we define the subgradient
of f at x:

∂f(x) = {g : ∀y ∈ Ω, f(y) ≥ f(x) + 〈g, y − x〉} 6= ∅

When f is differentiable at x, there is just one choice of g:

∂f(x) = {∇f(x)}

(because any other vector/chord which passes through a convex function f at x will violate the Taylor
expansion inequality.)

Example 2. Let f(x) = |x|. Then

∂f(x) =

{1}, x > 0

{−1}, x < 0

[−1, 1], x = 0

Fact 5. x∗ = argminx∈Ω f(x) ⇐⇒ 0 ∈ ∂f(x∗)

3.3 Online (sub)gradient descent algorithm

Initialize w1 ∈ Ω.
For t = 1, 2, . . . , T :

- choose wt

- Receive loss function ft, suffer loss ft(wt)

- Set gt ∈ ∂ft(wt)

- Update:

w′t+1 ← wt − ηgt
wt+1 ← ΠΩ(w′t+1) = argminw∈Ω ‖w − w′t+1‖2

Heuristic: imagine all ft are fixed (for all t, ft ≡ f), OGD walks in direction where ft decreases fastest,
where ∂f is introduced to account for non-differentiability.

Next time: we will analyze the regret performance of this online gradient descent algorithm.

6

