
CSC 588: Machine learning theory Spring 2021

Lecture 17: Stability-fitting tradeoff; online learning
Lecturer: Chicheng Zhang Scribe: Sarah Luca

1 Stability-fitting tradeoff

In the previous lecture we discussed OARO stability:

Theorem 1. If A is OARO-stable (on-average-replace-one) with rate g then

ES∼Dm [LD(A(S))− LS(A(S))] ≤ g(m).

In other words, if you have a guaranteed small expected loss difference (controlled by a rate function g where
g(m) is small) for a learning algorithm’s (A) output classifier when you randomly pick a sample and replace
it with another sample, it is an OARO-stable algorithm.

Under this assumption we can show that the learning algorithm A generalizes well.

Example 1. l2-regularization is an example of this stability:

Assume:

1. l(w, z) is ρ-lipschitz w.r.t w for any z

2. l(w, z) is convex w.r.t. w for any z

3. ŵ = argminw∈Rd(λ2 ‖w‖
2
2 + LS(w))

1,2,3 ⇒ A is g(m) =
2ρ2

λm
-OARO stable.

We want to apply this result to do an end-to-end analysis for regularized loss minimization (i.e. we want to
find a λ such that the output classifier ŵ has the lowest expected generalization error ES∼Dm [LD(A(S))]).

Note, we can decompose the expected generalization error into the expected training error and the expected
generalization gap:

ES∼Dm [LD(A(S))] = ES∼Dm [LS(A(S))] + ES∼Dm [LD(A(S))− LS(A(S))]

We can control the expected loss generalization gap with the stability rate function:

ES∼Dm [LD(A(S))− LS(A(S))] ≤ g(m) =
2ρ2

λm

If we increase the regularization strength λ too much, then the objective function could heavily skew pe-
nalizing the l2 norm, giving a large empirical loss. Thus ES∼Dm [LS(A(S))] can increase when λ is large,

whereas
2ρ2

λm
decreases as λ increases. This gives a tradeoff between fitness and stability. This means we

need to upper bound ES∼Dm [LS(A(S))] in terms of λ.

Define the objective function Fs(w) =
λ

2
‖w‖22 + LS(w). Then

1

FS(A(S)) ≤ FS(w∗)

where w∗ ∈ Rd. Note that FS(A(S)) is an upper bound for the original empirical loss LS(A(S)) :

LS(A(S)) ≤ FS(A(S)) ≤ FS(w∗)

because l2 regularization is always positive. Taking the expectation of both sides (ignoring the middle
inequality) we can relate expected empirical error to the expected regularize

ES∼Dm [LS(A(S))] ≤ ES∼Dm [FS(w∗)]

= ES∼Dm

[
λ

2
‖w∗‖2 + LS(w∗)

]
=
λ

2
‖w∗‖2 + LD(w∗)

by linearity and since ES∼DmLS(w∗) = LD(w∗). In summary:

∀ w∗, ES∼DmLD(A(S)) ≤ λ

2
‖w∗‖2 + LD(w∗) +

2ρ2

λm

Interpretations:

1. Suppose λ = O(1√
m

) (or any other function of m where 1
m � λ � 1), with this setting of λ, the

complexity penalty λ
2 ‖w

∗‖2 decreases with increasing sample size. In other words:

1

2
√
m
‖w∗‖2 +

2
√
mρ2

m

decreases as m increases for m > 1. So

ES∼DmLD(A(S)) ≤ min
w∗∈Rd

(
LD(w∗) +

1

2
√
m
‖w∗‖2 +

2
√
mρ2

m

)

For example, you can think of the set of linear predictors as belonging to the nested set of classifiers
(see Figure 1) where Hi = {w : ‖w‖2 ≤ f(i)} where f(i) = i, or f(i) = 2i or f(i) is another other
monotonically increasing function. In other words, it can compete with any of the hypothesis classes
by paying the appropriate penalties. This echos the model selection result we have obtained by using
cross validation and structural risk minimization.

(Chicheng notes: another good choice of λ is λ = ρ√
m

; this requires the knowledge of ρ. For this choice

of λ, we have

ES∼DmLD(A(S)) ≤ min
w∗∈Rd

(
LD(w∗) +

ρ(1 + ‖w∗‖2)

2
√
m

)
which can be better than the above bound when ρ is far away from 1.)

2

Figure 1:

2. Fix hypothesis class:

Say we want to focus on linear predictors with bounded norms:

H = {w ∈ Rd : ‖w‖2 ≤ B}

The result tells us that:

ES [LD(A(s))] ≤ min
w∈H

LD(w) +
λ

2
B2 +

2ρ2

λm

If we pick λ∗ = 2
ρ

B

√
1

m
, we get

λ

2
B2 +

2ρ2

λm
= 2ρB

√
1

m
.

This says that this algorithm has expected excess loss of this quantity which decreases as the number
of training samples increases. This is a PAC-like guarantee, except that the guarantee is measured
with expected loss, as opposed to bounding the loss of the output predictor with high probability.

We can set the number of training samples m such that the excess loss upper bound is at most ε :

m ≥ 4ρ2B2

ε2
⇒ ES [LD(A(S))]− min

w∈H
LD(w)] ≤ ε.

2 Online Learning

Online learning is a sequential decision making problem where the learner tries to collect information online
and act on this information.

Examples:

1. Spam detection:

At each time step, t = 1, 2, ..., T :

– Spam filter receives an email: xt ∈ X

3

– Based on new information from email, predict ŷt ∈ {−1,+1} where −1 denotes no spam, and +1
denotes spam.

– User continuously checks email and spam folders so every time spam filter makes a prediction, it
gets immediate feedback. It sees the ground truth label yt ∈ {1,+1}.

We want to make the filter as accurate as possible (i.e. minimize
∑T
t=1 I(ŷt 6= yt))

This setup is called online classification and can be extended to real valued outputs which corresponds
to online regression. In statistical learning, rather than receive input and feedback continuously in
time (as in this online example), you receive in put in batches and use this to generate a prediction
rule that can be used for future predictions.

2. Sequential investment (portfolio selection):

W1 = initial capital.
At each time step t = 1, 2, ..., T :

– Decide how to divide the capital Pt ∈ ∆N−1 = {P ∈ RNt :
∑
i P (i) = 1} and for each asset

i ∈ {1, ..., N} how much money to invest WtPt(i).

– Observe relative price change of the asset rt ∈ RNt (the price of the asset after time t divided by
the price at the beginning.) In other words, rt > 1 ⇒ the price increases, rt < 1 ⇒ the price
decreases, rt = 1⇒ the price stays the same.

At the end of day t, we have the price of the asset i : WtPt(i)rt(i) Then

Wt+1 =
∑
i

WtPt(i)rt(i) = Wt〈Pt, rt〉

Goal: maximize WT+1 the final capital.

3. Aggregating weather prediction:
For each day t = 1, 2, ..., T

– Obtain weather temperature predictions from N experts/models

– Based on predictions of all models, make a final prediction by following a randomly chosen expert
drawn from Pt ∈ ∆N−1

– Observe the losses of each model lt ∈ [0, 1]N . When expert i predicts today’s weather well, that
entry of lt(i) will be small.

Goal: make accurate predictions by minimizing
∑
t〈Pt, lt〉

Examples 1-3 have been in a fully informational setting (i.e. spam labels, relative changes of the price
of assets, and loss of each model). The next example uses learning with limited feedback (bandit
feedback).

4. Production recommendation (multi-armed bandits):
For t = 1, 2, ..., T

– Recommend a product at ∈ {1, ..., k} to a new customer

– The customer will see recommendation and react to it (i.e. if the ad is a link, the customer will
either click the link or not)

– Observe loss of particular ad at : lt(at), where lt ∈ [0, 1]k (i.e. clicked⇒ lt(at) = 0, not clicked⇒
lt(at) = 1)

4

The algorithm is only observing the loss of the recommend product, but we are assuming there is a
ground truth loss vector lt that is k-dimensional that encodes the users preferences of the product (i.e.
lt(i) is the counterfactual loss of users reaction to the ith product.

Goal: minimize cummulative loss
∑
t lt(at)

Note: the specific feedback lt(at) for this example is called bandit feedback.

5. Personalized product recommendation:
Given N policies: Π1...ΠN , each Πi is a mapping from the customer space to the product space
(Πi : X → {1, ..., k}).
For t = 1, 2, ..., T

– Observe contextual information of customer xt

– Randomly select one of the N policies Πt ∼Wt ∈ ∆N−1

– Recommend the product with customer information as input: Πt(xt)

– Observe users reaction (loss) on the recommended product: lt(Πt(xt)). Similarly, here we don’t
observe the other entries of the k-dimensional loss vector.

This is a contextual bandit model. The difference between this model and the multi-armed bandit
model is each customer is equipped with a context xt and we can use contextual information to refine
the recommendations. In other words, the policies Πi can help make the loss of a particular product
recommendation lt smaller than in the multi-armed bandit case.

3 Online (Convex) Optimization

Online learning can be captured in a simplified model with online convex optimization. This model can be
thought of as a game between a learner and an adversary. We need a few definitions:

Definition 2. The decision set called Ω is given to the learner as the action space. Often this set is convex.

Definition 3 (Convex Set). The set Ω is convex if ∀u, v ∈ Ω ∀α ∈ (0, 1), then

αu+ (1− α)v ∈ Ω

Given a decision set Ω, the game proceeds as follows:
For t = 1, 2, ..., T

– The learner commits to an action (i.e. picks Wt ∈ Ω)

– Environment picks loss function ft : Ω→ R

– Learner suffers loss ft(Wt), and observes information on ft.

Goal: minimize cumulative loss:
∑T
t=1 ft(Wt)

We also need to distinguish between a few settings of online learning:

– Stochastic: loss functions are chosen randomly from a distribution ({ft}Tt=1
i.i.d∼ D)

– Oblivious adversary: loss functions {ft}Tt=1 chosen ahead of time.

5

– Adaptive adversary: (in contrast with oblivious) ∀t, ft can depend on the previous decision made by
the learning algorithm {Ws}ts=1.

This is categorization based on the choices of ft, but we also have categorization based on the feedback
model:

– The learner sees full information and sees ft (or ∇ft(Wt)).

– Bandit setting: learner only sees loss of the specific action taken ft(Wt) ∈ R

– Other feedback settings (partial information)

If we go back to our examples from before, we can consider them in the context of online convex optimization:

1. Spam detection:

– The action set can be the set of all linear predictors (Ω = {w : ‖w‖2 ≤ B})
– The loss function is the classification loss defined in terms of the linear predictors: ft(w) =
I(yt〈w, xt〉 ≤ 0) = ln(1 + e−yt〈w,xt〉)

2. Sequential investment (portfolio selection):

– The action space is the decision made by learners Ω = ∆N−1.

– The loss function is ft(P) = − ln(〈P, rt〉)

3. Aggregating weather prediction:

– The action space is Ω = ∆N−1

– The loss function is ft(P) = 〈P, lt〉.

4. Production recommendation (multi-armed bandits):

– The decision space is the discrete set Ω = {1, ..., k}
– The loss function is ft(a) = lt(a)

5. Personalized product recommendation:

– The action space is Ω = ∆N−1.

– The loss function is ft(w) = Ei∈w[lt(Π
i(xt))] =

∑N
i=1 wilt(Π

i(xt))

For all of these online optimization problems, the performance metric is the cumulative loss. An analog of
this to statistical learning is the notion of regret, a comparison of the performance of the algorithm’s decision
over time with the algorithm’s decision in hindsight. Regret is defined as follows:

RT =

T∑
t=1

ft(Wt)− min
W∈Ω

T∑
t=1

ft(W)

The goal is to achieve a sublinear regret rate (RT = o(T)).

In the next lecture, we will show that if an online learning algorithm can achieve a small RT guarantee, then
the algorithm can be converted to a statistical learning algorithm.

6

