
CSC 588: Machine learning theory Spring 2021

Lecture 15: l2 Norm-based Margin Bounds; Regularized Loss Minimization Formulations

Lecturer: Chicheng Zhang Scribe: Shahriar Golchin

1 l2-SVM and Its Statistical Properties

In this lecture, we are going to talk about margin-based generalization error bounds for l2-SVMs. From the
last session, we recall that the l2-SVM is formulated as followings:

min
w
||w||2

s.t. ∀i yi〈w, xi〉 ≥ 1

We can rewrite the aforesaid formula in a different form which is more intuitive. To do so, first, we need
to change objective ||w||2. We can do this by changing ||w||2 to any monotonic function with respect to l2
norm like 1

2 ||w||
2
2. It is worth noting that it doesn’t change the optimization problem as it is still minimizing

the l2 norm. Second, we need to introduce two new parameters; α and ŵ.
Actually, α captures the magnitude of w, and ŵ captures the direction of w. So, we can rewrite w as

w = αŵ where α > 0 and ||ŵ|| = 1.
Therefore, now, we can rewrite the formula as below:

min
α,ŵ :α>0, ˆ||w||=1

α

s.t. ∀i yiα〈ŵ, xi〉 ≥ 1

As the next step, we’re trying to change the minimization problem to maximization problem. So, we can
write the equivalent format of above formula:

max
α,ŵ :α>0, ˆ||w||=1

1

α

s.t. ∀i yiα〈ŵ, xi〉 ≥
1

α

For any fixed ŵ, the optimal choice of α is such that

1

α
= min

i
yi〈ŵ, xi〉

So, based on this observation, we can eliminate α by replacing its optimal choice:

max
ŵ:||ŵ||=1

min
i

yi〈ŵ, xi〉

If we can solve this optimization problem, then we can also solve the original optimization problem.
The intuition of this optimization problem is very similar to the Figure 1 which we saw previously. Given

Figure 1, we want to identify a direction of ŵ such that the minimization margin be as large as possible.
Based on the optimization problem, first, we want all examples be classified correctly, and on the other hand,
we also want all the projections’ values be as large as possible. Therefore, purple ŵ is more preferable than
green ŵ.
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Figure 1: An intuition of the optimization problem

2 Generalization Error Bounds for l2-SVMs (l2-bounded linear
predictors)

Theorem 1. Introducing the set up: fix B2R2 > 0, S = (x1, y1)...(xn, yn) ∼ D, which D is supported on{
x ∈ Rd : ||x||2 ≤ R2

}
×
{
± 1
}

, θ ∈ (0, B1R2]. Then, with probability 1− δ for all w : ||w2|| ≤ B2:

PD(y〈w, x〉 ≤ 0) ≤ PS(y〈w, x〉 ≤ θ) +O

(
B2R2

θ

√
ln 1

δ

m

)
Proof. We use the same strategy as the l1/l∞ margin bound:

1. introduce ramp loss

2. uniform concentration of ramp losses

3. Contraction inequality of Rademacher complexity

Proof comes down to show that given S = (x1, y1)...(xn, yn) such that ∀i ||x||2 ≤ B2, and G = {mw : ||w||2 ≤
B2}, where mw(x, y) = y〈w, x〉.

We want to bound the following formula:

RadS(G) =
1

m
Eσ∼U(±1)m sup

w:||w||2≤B2

m∑
i=1

σiyi〈w, xi〉

As examples are considered as fixed, so σ1y1 ... σmym all have the same distribution as σ1 ... σn, so

RadS(G) =
1

m
Eσ∼U(±1)m sup

w:||w||2≤B2

m∑
i=1

σi〈w, xi〉

Next, we try to remove sup. To do so, we use linearity property and move summation into the inner product
and try to upper bound it.

m∑
i=1

σi〈w, xi〉 = 〈w,
m∑
i=1

σixi〉

If w is l2-bounded, then we can use Cauchy-Schwarz inequality:

〈w,
m∑
i=1

σixi〉 ≤ ||w||2 ||
m∑
i=1

σixi||2

≤ B2||
m∑
i=1

σixi||2
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So,

RadS(G) ≤ B2

m
Eσ ||

m∑
i=1

σixi||2

Let’s say ||
∑m
i=1 σixi||2 is like a random variable Z and using the fact that (EZ)2 ≤ E(Z2):

≤ B2

m

√√√√Eσ ||
m∑
i=1

σixi||22

=
B2

m

√√√√Eσ[〈
m∑
i=1

σixi,

m∑
j=1

σjxj〉]

Using linearity of inner product:

=
B2

m

√√√√Eσ[

m∑
i=1

m∑
j=1

σiσj〈xi, xj〉]

Moving E inside the summation:

=
B2

m

√√√√ m∑
i=1

m∑
j=1

Eσ[σiσj ]〈xi, xj〉

Given that

Eσ[σiσj ] =

{
1 i = j
0 otherwise

(1)

So,

=
B2

m

√√√√ m∑
i=1

〈xi, xi〉

which 〈xi, xi〉 = ||xi||22 ≤ R2
2, and finally,

≤ B2

m

√
mR2

2 =
B2R2√
m

3 Comparison between l1/l∞ and l1/l2 Margin Bounds

Table 1 shows a comparison between l2/l∞ and l2/l2 Margin Bounds. Note: It turns out that these bounds
are incomparable in general.
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Table 1: A comparison between margin bounds
Constraint on X Constraint on w Error Bound

l1/l∞ ||x||∞ ≤ R∞ ||w||1 ≤ B1

∼
O(B1R∞

θ

√
1
m )

l2/l2 ||x||2 ≤ R2 ||w||2 ≤ B2

∼
O(B2R2

θ

√
1
m )

Figure 2: Illustration of 2D examples

4 Exercise

Applying l2/l2 generalization bound to l1/l∞ setting; How can we pick R2 such that ||x||∞ ≤ R∞ ⇒ ||x||2 ≤
R2?

Let’s see Figure 2 that shows 2D examples for having more insights: It turns out that if we pick the top
right corner of the box, then examples in that point have the largest l2 norm. So, the l2 norm of that point
based on the Figure 2 is

√
2R∞. In general, in d dimensions, that corner has the larger and larger l2 norm.

Therefore, the tightest bound we can choose is R2 =
√
dR∞.

How about B2? For choosing B2, let’s take a look at Figure 3. As we can see in Figure 3, if we choose
B2 = B1, then it would be the best choice of l2 radius. Also, choosing B2 = B1 would be sufficient considering
the fact that ||w||2 ≤ ||w||1.

So, with these choices and putting them into l2/l2 bound, we will get a generalization bound in terms of
R2B2 =

√
dR∞B1, a factor of

√
d worse than the original l1/l∞ bound.

More Exercise Applying l1/l∞ bound to the l2/l2 setting (will be
√
d factor worse).

5 Coping with Linear Non-separability in SVMs

The idea is to first introduce nonlinear feature maps (or basis functions), and second, relax the SVM for-
mulation; allowing some examples to be incorrectly classified. These two ideas will be discussed in the
followings.
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Figure 3: Illustration of 2D linear predictors

1. Introducing Nonlinear Feature Maps (Basis Functions)

As a motivating example, first, consider the following example shown in Figure 4. We assume that data is
2D and all positive examples are in a unit circle (left-hand side drawing), and negative examples are outside
of circle. As we can see, no linear classifier can behave well. If we consider a candidate linear predictor like

Figure 4: Example of nonlinear feature map

the green one in the drawing, then it would miss a lot of negative examples. So, we can define a feature
map like φ(x) = (x21, x

2
2). After applying this transformation, all positive examples will be mapped within

the triangle, and negative examples outside of it. Therefore, after this transformation, data becomes more
amendable for linear classification.

To summarize what we did for nonlinear feature maps, consider the following steps:

1. Define φ : Rd ⇒ Rm, (xi, yi)⇒ (φ(xi), yi)

2. Solve SVM on (φ(xi), yi)⇒ ŵ ∈ Rm

3. Find predictor: sign(〈φ(x), ŵ〉)

Note: there are SVM training algorithms that have time complexity independent of m. Also, if 〈φ(x), φ(y)〉
can be evaluated in time dependent of m, then it is called Kernel trick.
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2. Soft Margin SVMs

As we know, the original SVM has the following formulas:

min
w

1

2
||w||22

s.t. ∀i yi〈w, xi〉 ≥ 1

As discussed, this formula may not be feasible. One way to make it feasible is to add some slack variables ξ:

min
w,(ξ1...ξm)≥0

λ

2
||w||22 +

m∑
i=1

ξi

s.t. ∀i yi〈w, xi〉 ≥ 1− ξi

Also, we added λ as a coefficient to trade off between ||w||22 and
∑m
i=1 ξi. So, if λ is smaller, then more likely

to classify more correctly, but ||w|| will likely to be large.
If we want to eliminate ξ, for any fixed w, the optimal choices if ξi are ξi ≥ 1−yi〈w, xi〉 and ξi ≥ 0 which

yield to ξi ≥ max(0, 1− yi〈w, xi〉) and vice versa. So, the optimal choices are ξi = max(0, 1− yi〈w, xi〉).
Therefore, what is left is:

min
w

λ

2
||w||22 +

m∑
i=1

max(0, 1− yi〈w, xi〉)

The above formula is a bit like biased complexity trade off that we have seen in the model selection lecture.
We can say λ

2 ||w||
2
2 is as complexity of linear predictor and

∑m
i=1 max(0, 1− yi〈w, xi〉 as empirical risk. We

can write
∑m
i=1 max(0, 1− yi〈w, xi〉 as the followings:

m∑
i=1

max(0, 1− yi〈w, xi〉) = φ(yi〈w, xi〉)

where φ(Z) = max(0, 1− Z).
As Figure 5 shows, it’s like a hinge, so it is called Hinge loss.

Figure 5: Hinge loss vs 0-1 loss

We can write more general form of previous formula as below which is called as regularized loss mini-
mization:

min
w

λR(w) +

m∑
i=1

φ(fw(xi), yi)

where we can choose any R(w) and φ(fw(xi), yi).
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6 Some Notable Examples

1. If we define R(w) = 1
2 ||w||

2
2, φ(fw(xi), yi) = (fw(x)−y)2, fw(x) = 〈w, x〉, then for λ = 0 it corresponds

to ”ordinary least squares”, and for λ > 0 it corresponds to ”ridge regression”.

2. If we define R(w) = ||w||1, then it corresponds to ”LASSO”.

3. If we define R(w) = ||w||22, φ(fw(xi), yi) = ln(1 + exp(−yifw(xi)), fw(x) = 〈w, x〉, then it corresponds
to ”logistic regression”. If we define yifw(xi) as Z, then logistic regression will have the shape like
Figure 6.

Figure 6: Logistic loss vs 0-1 loss

In the next class, we will talk about regularized loss minimization’s solutions generalization performance
from stability view.
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