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Margin-based generalization error bounds for SVMs

Theorem 1. (The More Abstract Version) Suppose D is supported on {x ∈ Rd : ||x||∞ ≤ R∞}× {±1}. Fix
the margin value θ ∈ (0, B1R∞]. Then with probability 1− δ over m samples in S, for any predictor w such
that ||w||1 ≤ B1,

PD(y〈w, x〉 ≤ 0) ≤ PS(y〈w, x〉 ≤ θ) +O

(
B1R∞
θ

√
ln(d/δ)

m

)

Figure 1: Illustration of binary classifier finding the line of best fit to separate data points + and −. For the
given line, the classification error is 2/8.

Theorem 2. Define the family of loss functions F by

F = {lθ,w : ||w||1 ≤ B1}

where lθ,w = φθ(y〈w, x〉) is the ramp loss function (see figure below). Then

Radn(F) ≤ O

(
B1R∞
θ

√
ln d

m

)
where Radn is the Rademacher complexity.

Proof. Let’s use some intuition:

Radn(F) = ES∼Dm RadS(F)

By definition of Rademacher complexity

RadS(F) = Eσ∼U(±1)m
1

m
sup
f∈F

m∑
i=1

σif(xi, yi)

=
1

m
Eσ∼U(±1)m sup

w:||w||1≤B1

m∑
i=1

σiφθ(yi〈w, x〉)

The first step is to use the contraction inequality to “remove” φθ.
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Figure 2: The Ramp Loss function. The ramp has slope −1/θ. Note this is a Lipschitz function with
Lipschitz constant 1/θ.

Lemma 3 (Contraction Inequality). Suppose S = {z1, ..., zm}, G is a function class, and φ is a Lipschitz
function (∀a, b, |φ(a)− φ(b)| ≤ L|a− b| with Lipschitz constant L). If we define F

F = {φ ◦ g : g ∈ G}

Then

RadS(F) ≤ LRadS(G).

Applying the contraction inequality to G

G = {mw : ||w||1 ≤ B1}

where mw(x, y) = y〈w, x〉. Choose φ = φθ as defined by the ramp loss function and define the class of
functions

F = {φ ◦ g : g ∈ G}

We obtain

RadS(F) ≤ Lφθ RadS(G)

with the Lipschitz constant Lφθ = 1/θ. Now to bound RadS(G)

RadS(G) =
1

m
Eσ sup
||w||1≤B1

m∑
i=1

σiyi〈w, xi〉 (1)

=
1

m
Eσ sup
||w||1≤B1

m∑
i=1

σi〈w, xi〉 (2)

=
1

m
Eσ sup
||w||1≤B1

〈
w,

m∑
i=1

σixi

〉
(3)

The second equality is due to the fact that σi is equivalent in distribution to σiyi. i.e. (σ1, ..., σm) =d

(σ1y1, ..., σmym). The third equality is by linearity of expectation. To bound this last term, we briefly
discuss Hölder’s Inequality. Note the following fact: given β = (β1, ..., βd),

max
α:||α||1≤A

〈α, β〉 = A||β||∞

max
α:||α||2≤A

〈α, β〉 = A||β||2

These are particular consequences of Hölder’s Inequality for conjugate pairs (p, q) that satisfy 1
p + 1

q = 1.
The second case above, p = 2, q = 2, is also known as the Cauchy-Schwartz inequality. We prove the first
statement.
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Proof. First we show that A||β||∞ is an upper bound. Suppose

∀α,
∑
i

|αi| ≤ A

Then

〈α, β〉 =
∑
i

αiβi

≤
∑
i

|αi||βi|

≤
∑
i

|αi|max
i
|βi|

=
∑
i

|αi|||β||∞

= ||β||∞||α||1 ≤ A||β||∞

Now we show that there exists a value of α, say α∗ so that 〈β, α∗〉 = A||β||∞. Choose α∗ as follows

α∗ =

{
Aei∗ βi∗ > 0

−Aei∗ βi∗ ≤ 0

where

i∗ = argmax
i
|βi|

and ei is the ith standard basis vector. Then ||α||1 ≤ A and

〈α∗, β〉 = A|βi∗ | = A||β||∞

Continuing with our bounding of RadS(G), we can apply the Hölder inequality to equation (3) to obtain

RadS(G) ≤ B1

m
Eσ

∣∣∣∣∣
∣∣∣∣∣
m∑
i=1

σixi

∣∣∣∣∣
∣∣∣∣∣
∞

(4)

=
B1

m
Eσ max

(
d

max
j=1

m∑
i=1

σixij ,
d

max
j=1

m∑
i=1

σi(−xij)

)
(5)

The above is true since ||U ||∞ = max(u1,−u1, u2,−u2, ..., ud,−ud) and recall that the jth entry of the ith

data point, xij ∈ [−R∞, R∞].
Now we apply Massart’s Lemma: If N σ2-sub-Gaussian random variables X1, ..., XN , then

Emax
i
Xi ≤ σ

√
2 lnN

Letting N = 2d, σ2 = mR2
∞, we can upper bound equation (5) by

≤ B1

m

√
mR2

∞2 ln(2d)

= B1R∞

√
2 ln(2d)

m
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Now to complete the proof of the contraction inequality. Consider the family of sets

F = {φ ◦ g : g ∈ G}

with φ being Lipschitz with Lipschitz constant L. Then we’d like to present following argument.

RadS(F) = Eσ sup
g∈G

m∑
i=1

σiφ(g(zi))

≤ Eσ sup
g∈G

Lσ1g(z1) +

m∑
i=2

σiφ(g(zi))

≤ Eσ sup
g∈G

Lσ1g(z1) + Lσ2g(z2) +

m∑
i=3

σiφ(g(zi))

...

≤ Eσ sup
g∈G

m∑
i=1

Lσig(zi)

We prove the first inequality. Note:

RadS(F) = Eσ2:n

[
1

2
sup
g∈G

(
φ(g(z1)) +

m∑
i=2

σiφ(g(zi))
)

+
1

2
sup
g′∈G

(
− φ(g′(z1)) +

m∑
i=2

σiφ(g′(zi))
)]

so that

RadS(F) = Eσ2:n

1

2
sup
g,g′∈G

[
φ(g(z1))− φ(g′(z1)) +

m∑
i=2

σiφ(g(zi)) +

m∑
i=2

σiφ(g′(zi))

]

since this upper bound is symmetric with respect to g and g′, we can apply the Lipschitz property of φ to
get

φ(g(z1))− φ(g′(z1)) ≤ L|g(z1)− g′(z1)|.

And without loss of generality, we can consider g(z1) ≥ g′(z1)

≤ Eσ2:n

1

2
sup

g,g′∈G,g(z1)≥g′(z1)
L(g(z1)− g′(z1)) +

m∑
i=2

σiφ(g(zi)) +

m∑
i=2

σiφ(g′(zi))

= Eσ2:n

[
1

2
sup
g∈G

(
Lg(z1) +

m∑
i=2

σiφ(g(zi))
)
− 1

2
sup
g′∈G

(
Lg′(z1) +

m∑
i=2

σiφ(g′(zi))
)]

= Eσ2:n

[
Eσ1

[
sup
g∈G

Lσ1g(z1) +

m∑
i=2

σiφ(g(zi))
]]

Repeated application of this procedure will allow us to obtain

RadS(F) ≤ Eσ sup
g∈G

m∑
i=1

Lσig(z1)
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The algorithm inspired by the margin-based generalization bound: Fix θ = 1. We’d like to find a weights
vector w such that

1. PS(y〈w, x〉 ≤ 1) = 0

2. ||w||1 is as small as possible

Figure 3: w and w′ are possible classifications of the data. w is the better classifier because we don’t need
a large scaling factor to ensure that all examples have margin of error ≥ 1.

So this can be formulated as follows

min ||w||1

subject to

yi〈w, xi〉 ≥ 1, ∀i ∈ {1, ...,m}

This is known as the l1-Support Vector Machine (SVM). This is a convex optimization problem of the form

min
x
f(x)

s.t. x ∈ K

where K is a convex set. l2-SVM is formulated as follows

min
w
||w||2

s.t. yi〈w, xi〉 ≥ 1, ∀i ∈ {1, ...,m}

In the next class we will discuss margin-based generalization error bounds for l2-SVMs.
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