Lecture 14: Support Vector Machine (SVM)

Lecturer: Chicheng Zhang

Scribe: Ruby Abrams

Margin-based generalization error bounds for SVMs

Theorem 1. (The More Abstract Version) Suppose \mathcal{D} is supported on $\left\{x \in \mathbb{R}^{d}:\|x\|_{\infty} \leq R_{\infty}\right\} \times\{ \pm 1\}$. Fix the margin value $\theta \in\left(0, B_{1} R_{\infty}\right]$. Then with probability $1-\delta$ over m samples in S, for any predictor w such that $\|w\|_{1} \leq B_{1}$,

$$
\mathbb{P}_{\mathcal{D}}(y\langle w, x\rangle \leq 0) \leq \mathbb{P}_{S}(y\langle w, x\rangle \leq \theta)+\mathcal{O}\left(\frac{B_{1} R_{\infty}}{\theta} \sqrt{\frac{\ln (d / \delta)}{m}}\right)
$$

Figure 1: Illustration of binary classifier finding the line of best fit to separate data points + and - . For the given line, the classification error is $2 / 8$.

Theorem 2. Define the family of loss functions \mathcal{F} by

$$
\mathcal{F}=\left\{l_{\theta, w}:\|w\|_{1} \leq B_{1}\right\}
$$

where $l_{\theta, w}=\phi_{\theta}(y\langle w, x\rangle)$ is the ramp loss function (see figure below). Then

$$
\operatorname{Rad}_{n}(\mathcal{F}) \leq \mathcal{O}\left(\frac{B_{1} R_{\infty}}{\theta} \sqrt{\frac{\ln d}{m}}\right)
$$

where Rad_{n} is the Rademacher complexity.
Proof. Let's use some intuition:

$$
\operatorname{Rad}_{n}(\mathcal{F})=\mathbb{E}_{S \sim \mathcal{D}^{m}} \operatorname{Rad}_{S}(\mathcal{F})
$$

By definition of Rademacher complexity

$$
\begin{aligned}
\operatorname{Rad}_{S}(\mathcal{F}) & =\mathbb{E}_{\sigma \sim U(\pm 1)^{m}} \frac{1}{m} \sup _{f \in \mathcal{F}} \sum_{i=1}^{m} \sigma_{i} f\left(x_{i}, y_{i}\right) \\
& =\frac{1}{m} \mathbb{E}_{\sigma \sim U(\pm 1)^{m}} \sup _{w:\|w\|_{1} \leq B_{1}} \sum_{i=1}^{m} \sigma_{i} \phi_{\theta}\left(y_{i}\langle w, x\rangle\right)
\end{aligned}
$$

The first step is to use the contraction inequality to "remove" ϕ_{θ}.

Figure 2: The Ramp Loss function. The ramp has slope $-1 / \theta$. Note this is a Lipschitz function with Lipschitz constant $1 / \theta$.

Lemma 3 (Contraction Inequality). Suppose $S=\left\{z_{1}, \ldots, z_{m}\right\}, \mathcal{G}$ is a function class, and ϕ is a Lipschitz function $(\forall a, b,|\phi(a)-\phi(b)| \leq L|a-b|$ with Lipschitz constant L). If we define \mathcal{F}

$$
\mathcal{F}=\{\phi \circ g: g \in \mathcal{G}\}
$$

Then

$$
\operatorname{Rad}_{S}(\mathcal{F}) \leq L \operatorname{Rad}_{S}(\mathcal{G})
$$

Applying the contraction inequality to \mathcal{G}

$$
\mathcal{G}=\left\{m_{w}:\|w\|_{1} \leq B_{1}\right\}
$$

where $m_{w}(x, y)=y\langle w, x\rangle$. Choose $\phi=\phi_{\theta}$ as defined by the ramp loss function and define the class of functions

$$
\mathcal{F}=\{\phi \circ g: g \in \mathcal{G}\}
$$

We obtain

$$
\operatorname{Rad}_{S}(\mathcal{F}) \leq L_{\phi_{\theta}} \operatorname{Rad}_{S}(\mathcal{G})
$$

with the Lipschitz constant $L_{\phi_{\theta}}=1 / \theta$. Now to bound $\operatorname{Rad}_{S}(\mathcal{G})$

$$
\begin{align*}
\operatorname{Rad}_{S}(\mathcal{G}) & =\frac{1}{m} \mathbb{E}_{\sigma} \sup _{\|w\|_{1} \leq B_{1}} \sum_{i=1}^{m} \sigma_{i} y_{i}\left\langle w, x_{i}\right\rangle \tag{1}\\
& =\frac{1}{m} \mathbb{E}_{\sigma} \sup _{\|w\|_{1} \leq B_{1}} \sum_{i=1}^{m} \sigma_{i}\left\langle w, x_{i}\right\rangle \tag{2}\\
& =\frac{1}{m} \mathbb{E}_{\sigma} \sup _{\|w\|_{1} \leq B_{1}}\left\langle w, \sum_{i=1}^{m} \sigma_{i} x_{i}\right\rangle \tag{3}
\end{align*}
$$

The second equality is due to the fact that σ_{i} is equivalent in distribution to $\sigma_{i} y_{i}$. i.e. $\left(\sigma_{1}, \ldots, \sigma_{m}\right)={ }^{d}$ $\left(\sigma_{1} y_{1}, \ldots, \sigma_{m} y_{m}\right)$. The third equality is by linearity of expectation. To bound this last term, we briefly discuss Hölder's Inequality. Note the following fact: given $\beta=\left(\beta_{1}, \ldots, \beta_{d}\right)$,

$$
\begin{aligned}
& \max _{\alpha:\|\alpha\|_{1} \leq A}\langle\alpha, \beta\rangle=A\|\beta\|_{\infty} \\
& \max _{\alpha:\|\alpha\|_{2} \leq A}\langle\alpha, \beta\rangle=A\|\beta\|_{2}
\end{aligned}
$$

These are particular consequences of Hölder's Inequality for conjugate pairs (p, q) that satisfy $\frac{1}{p}+\frac{1}{q}=1$. The second case above, $p=2, q=2$, is also known as the Cauchy-Schwartz inequality. We prove the first statement.

Proof. First we show that $A\|\beta\|_{\infty}$ is an upper bound. Suppose

$$
\forall \alpha, \sum_{i}\left|\alpha_{i}\right| \leq A
$$

Then

$$
\begin{aligned}
\langle\alpha, \beta\rangle & =\sum_{i} \alpha_{i} \beta_{i} \\
& \leq \sum_{i}\left|\alpha_{i} \| \beta_{i}\right| \\
& \leq \sum_{i}\left|\alpha_{i}\right| \max _{i}\left|\beta_{i}\right| \\
& =\sum_{i}\left|\alpha_{i}\right|\|\beta\|_{\infty} \\
& =\|\beta\|_{\infty}\|\alpha\|_{1} \leq A\|\beta\|_{\infty}
\end{aligned}
$$

Now we show that there exists a value of α, say α^{*} so that $\left\langle\beta, \alpha^{*}\right\rangle=A\|\beta\|_{\infty}$. Choose α^{*} as follows

$$
\alpha^{*}= \begin{cases}A e_{i^{*}} & \beta_{i^{*}}>0 \\ -A e_{i^{*}} & \beta_{i^{*}} \leq 0\end{cases}
$$

where

$$
i^{*}=\underset{i}{\operatorname{argmax}}\left|\beta_{i}\right|
$$

and e_{i} is the $i^{\text {th }}$ standard basis vector. Then $\|\alpha\|_{1} \leq A$ and

$$
\left\langle\alpha^{*}, \beta\right\rangle=A\left|\beta_{i^{*}}\right|=A\|\beta\|_{\infty}
$$

Continuing with our bounding of $\operatorname{Rad}_{S}(\mathcal{G})$, we can apply the Hölder inequality to equation (3) to obtain

$$
\begin{align*}
\operatorname{Rad}_{S}(\mathcal{G}) & \leq \frac{B_{1}}{m} \mathbb{E}_{\sigma}\left\|\sum_{i=1}^{m} \sigma_{i} x_{i}\right\|_{\infty} \tag{4}\\
& =\frac{B_{1}}{m} \mathbb{E}_{\sigma} \max \left(\max _{j=1}^{d} \sum_{i=1}^{m} \sigma_{i} x_{i j}, \max _{j=1}^{d} \sum_{i=1}^{m} \sigma_{i}\left(-x_{i j}\right)\right) \tag{5}
\end{align*}
$$

The above is true since $\|U\|_{\infty}=\max \left(u_{1},-u_{1}, u_{2},-u_{2}, \ldots, u_{d},-u_{d}\right)$ and recall that the $j^{\text {th }}$ entry of the $i^{\text {th }}$ data point, $x_{i j} \in\left[-R_{\infty}, R_{\infty}\right]$.
Now we apply Massart's Lemma: If $N \sigma^{2}$-sub-Gaussian random variables X_{1}, \ldots, X_{N}, then

$$
\mathbb{E} \max _{i} X_{i} \leq \sigma \sqrt{2 \ln N}
$$

Letting $N=2 d, \sigma^{2}=m R_{\infty}^{2}$, we can upper bound equation (5) by

$$
\begin{aligned}
& \leq \frac{B_{1}}{m} \sqrt{m R_{\infty}^{2} 2 \ln (2 d)} \\
& =B_{1} R_{\infty} \sqrt{\frac{2 \ln (2 d)}{m}}
\end{aligned}
$$

Now to complete the proof of the contraction inequality. Consider the family of sets

$$
\mathcal{F}=\{\phi \circ g: g \in \mathcal{G}\}
$$

with ϕ being Lipschitz with Lipschitz constant L. Then we'd like to present following argument.

$$
\begin{aligned}
\operatorname{Rad}_{S}(\mathcal{F}) & =\mathbb{E}_{\sigma} \sup _{g \in \mathcal{G}} \sum_{i=1}^{m} \sigma_{i} \phi\left(g\left(z_{i}\right)\right) \\
& \leq \mathbb{E}_{\sigma} \sup _{g \in \mathcal{G}} L \sigma_{1} g\left(z_{1}\right)+\sum_{i=2}^{m} \sigma_{i} \phi\left(g\left(z_{i}\right)\right) \\
& \leq \mathbb{E}_{\sigma} \sup _{g \in \mathcal{G}} L \sigma_{1} g\left(z_{1}\right)+L \sigma_{2} g\left(z_{2}\right)+\sum_{i=3}^{m} \sigma_{i} \phi\left(g\left(z_{i}\right)\right) \\
\cdots & \\
& \leq \mathbb{E}_{\sigma} \sup _{g \in \mathcal{G}} \sum_{i=1}^{m} L \sigma_{i} g\left(z_{i}\right)
\end{aligned}
$$

We prove the first inequality. Note:

$$
\begin{aligned}
\operatorname{Rad}_{S}(\mathcal{F})=\mathbb{E}_{\sigma_{2: n}}[& \frac{1}{2} \sup _{g \in \mathcal{G}}\left(\phi\left(g\left(z_{1}\right)\right)+\sum_{i=2}^{m} \sigma_{i} \phi\left(g\left(z_{i}\right)\right)\right) \\
& \left.+\frac{1}{2} \sup _{g^{\prime} \in \mathcal{G}}\left(-\phi\left(g^{\prime}\left(z_{1}\right)\right)+\sum_{i=2}^{m} \sigma_{i} \phi\left(g^{\prime}\left(z_{i}\right)\right)\right)\right]
\end{aligned}
$$

so that

$$
\operatorname{Rad}_{S}(\mathcal{F})=\mathbb{E}_{\sigma_{2: n}} \frac{1}{2} \sup _{g, g^{\prime} \in \mathcal{G}}\left[\phi\left(g\left(z_{1}\right)\right)-\phi\left(g^{\prime}\left(z_{1}\right)\right)+\sum_{i=2}^{m} \sigma_{i} \phi\left(g\left(z_{i}\right)\right)+\sum_{i=2}^{m} \sigma_{i} \phi\left(g^{\prime}\left(z_{i}\right)\right)\right]
$$

since this upper bound is symmetric with respect to g and g^{\prime}, we can apply the Lipschitz property of ϕ to get

$$
\phi\left(g\left(z_{1}\right)\right)-\phi\left(g^{\prime}\left(z_{1}\right)\right) \leq L\left|g\left(z_{1}\right)-g^{\prime}\left(z_{1}\right)\right| .
$$

And without loss of generality, we can consider $g\left(z_{1}\right) \geq g^{\prime}\left(z_{1}\right)$

$$
\begin{aligned}
& \leq \mathbb{E}_{\sigma_{2: n}} \frac{1}{2} \sup _{g, g^{\prime} \in \mathcal{G}, g\left(z_{1}\right) \geq g^{\prime}\left(z_{1}\right)} L\left(g\left(z_{1}\right)-g^{\prime}\left(z_{1}\right)\right)+\sum_{i=2}^{m} \sigma_{i} \phi\left(g\left(z_{i}\right)\right)+\sum_{i=2}^{m} \sigma_{i} \phi\left(g^{\prime}\left(z_{i}\right)\right) \\
& =\mathbb{E}_{\sigma_{2: n}}\left[\frac{1}{2} \sup _{g \in \mathcal{G}}\left(L g\left(z_{1}\right)+\sum_{i=2}^{m} \sigma_{i} \phi\left(g\left(z_{i}\right)\right)\right)-\frac{1}{2} \sup _{g^{\prime} \in \mathcal{G}}\left(L g^{\prime}\left(z_{1}\right)+\sum_{i=2}^{m} \sigma_{i} \phi\left(g^{\prime}\left(z_{i}\right)\right)\right)\right] \\
& =\mathbb{E}_{\sigma_{2: n}}\left[\mathbb{E}_{\sigma_{1}}\left[\sup _{g \in \mathcal{G}} L \sigma_{1} g\left(z_{1}\right)+\sum_{i=2}^{m} \sigma_{i} \phi\left(g\left(z_{i}\right)\right)\right]\right]
\end{aligned}
$$

Repeated application of this procedure will allow us to obtain

$$
\operatorname{Rad}_{S}(\mathcal{F}) \leq \mathbb{E}_{\sigma} \sup _{g \in \mathcal{G}} \sum_{i=1}^{m} L \sigma_{i} g\left(z_{1}\right)
$$

The algorithm inspired by the margin-based generalization bound: Fix $\theta=1$. We'd like to find a weights vector w such that

1. $\mathbb{P}_{S}(y\langle w, x\rangle \leq 1)=0$
2. $\|w\|_{1}$ is as small as possible

Figure 3: w and w^{\prime} are possible classifications of the data. w is the better classifier because we don't need a large scaling factor to ensure that all examples have margin of error ≥ 1.

So this can be formulated as follows

$$
\min \|w\|_{1}
$$

subject to

$$
y_{i}\left\langle w, x_{i}\right\rangle \geq 1, \quad \forall i \in\{1, \ldots, m\}
$$

This is known as the l_{1}-Support Vector Machine (SVM). This is a convex optimization problem of the form

$$
\begin{array}{r}
\min _{x} f(x) \\
\text { s.t. } x \in K
\end{array}
$$

where K is a convex set. l_{2}-SVM is formulated as follows

$$
\begin{array}{cl}
\min _{w}\|w\|_{2} \\
\text { s.t. } y_{i}\left\langle w, x_{i}\right\rangle \geq 1, \quad \forall i \in\{1, \ldots, m\}
\end{array}
$$

In the next class we will discuss margin-based generalization error bounds for l_{2}-SVMs.

