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1 Weak learnability implies “linear separability” - a nonconstruc-
tive view

Recall: A is a γ-weak PAC learner for H if there is a sample complexity function fS : (0, 1)→ N such that
for any δ > 0 and any distribution D realizable by H with m i.i.d. training examples, A produces a classifier
f such that with probability 1− δ

err(f,D) ≤ 1

2
− γ

Now suppose we have a γ-weak learner A which returns classifiers from a base hypothesis class B. Then,
for any h∗ ∈ H, and any distribution DX over X , there is an f ∈ B (returned by A with nonzero probability)
such that

Ex∼DX
I(f(x) 6= h∗(x)) ≤ 1

2
− γ.

Informally, the above statement says that, fix any h? in H; then for any distribution over the unlabeled
examples DX , we can find a classifier from the base class that nontrivially correlates with h? with respect to
DX (recall that a classifier that performs random guessing would have an error of exactly 1

2 with respect to
h?). AdaBoost gives a way to generate a set of base classifiers and weights whose induced weighted majority
vote can express h? exactly (after taking signs), summarized below:

Claim 1. Suppose we have a γ-weak learner A for H which returns classifiers from a base hypothesis class
B. Then, for any h? ∈ H, there is a distribution DB over B such that

h∗(x) = sign(
∑
f∈B

DB(f)f(x))

Remark 2. This is a statement about the expressiveness of the base class B. Note that AdaBoost gives an
algorithmic proof of this.

We now provide another perspective of the claim by giving a more direct (nonconstructive) proof of it.

Proof. Recall from the above discussion that for any h∗ ∈ H, and any distribution DX over X , there is an
f ∈ B (returned by A with nonzero probability) such that

Ex∼DX
I(f(x) 6= h∗(x)) ≤ 1

2
− γ.

The statement can be rewritten using max and min as follows:

max
DX

min
f∈B

Ex∼DX
I(f(x) 6= h∗(x)) ≤ 1

2
− γ

This is equivalent to

max
DX

min
f∈B

Ex∼DX

[
1− f(x)h∗(x)

2

]
≤ 1

2
− γ

Which is equivalent to
min
DX

max
f∈B

Ex∼DX
f(x)h∗(x) ≥ 2γ
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Letting ∆(B) be the set of all distributions support on B, we can rewrite the left hand side of this inequality
as

min
DX

max
DB∈∆(B)

Ef∼DBEx∼DX
f(x)h∗(x) (1)

We will use the Von Neumann Minimax Theorem to obtain the required bound.

Theorem 3 (Von Neumann). Let ∆d = {(ν1, . . . , νd) | ∀i, νi ≥ 0 and
∑
i νi = 1}. Given A ∈ Rm×n, the

following holds
min
p∈∆m

max
q∈∆n

p>Aq = max
q∈∆n

min
p∈∆m

p>Aq

Please see below the end of the proof for some illuminating examples of what this theorem says. For
now, we will complete the proof. We will apply Von Neumann’s theorem to Equation 1 by letting p = DX
and q = DB, so that Equation 1 becomes

max
DB

min
DX

Ex∼DX
Ef∼DBf(x)h∗(x)

This implies that
max
DB

min
DX

Ex∼DX
Ef∼DBf(x)h∗(x) ≥ 2γ

Equivalently,
max
DB

min
x

Ef∼DBf(x)h∗(x) ≥ 2γ

Changing back to quantifiers this equation says:

there is a DB such that for all x ∈ X
∑
f∈DB

DB(f)f(x)h∗(x) ≥ 2γ > 0

Remark 4. Suppose that B is finite and for each x ∈ X define x̃ = (f(x))f∈B ∈ {±1}|B|. Then, h∗(x) =
sign(

∑
f∈B DB(f)f(x)) implies that, (x̃, h∗(x))x∈X is linearly separable by

w = (DB(f))f∈B ∈ R|B|

1.1 Examples for Von Neumann’s theorem

Suppose that Alice plays against Bob in a (zero-sum) game of Rock-Paper-Scissors. Suppose that the payoff
matrix A (the loss of Alice = the gain of Bob) of the game is

A =
Alice

Bob
R P S

R 0 1 -1
P -1 0 1
R 1 -1 0

We will consider a couple different protocols.

Protocol 1

• Alice goes first and chooses row i

• Bob reponds by choosing col j after seeing i

• Alice suffers loss of Ai,j
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If Alice and Bob behave optimally, what is Alice’s payoff? Given, information about i, Bob can always
find j such that Ai,j = 1, i.e. given i, maxj Ai,j = 1. As this holds for any i,

min
i

max
j
Ai,j = 1

Hence, Alice always suffers a loss of 1 in this protocol.

Protocol 2

• Bob goes first and chooses col j

• Alice reponds by choosing row i after seeing j

• Alice suffers loss of Ai,j

If Alice and Bob behave optimally, what is Alice’s payoff? Given, information about j, Alice can
always find i such that Ai,j = −1, i.e. given j, miniAi,j = −1. As this holds for any j,

max
j

min
i
Ai,j = −1

And it follows that Alice receives a loss of −1 in this protocol.

Chicheng notes: the above two protocols are also sometimes called “Stackelberg games” where two
players move sequentially. In summary, with the ability to take actions at later stages, Alice gains an
advantage and can suffer a lower loss. This is true in general, in that for any matrix A, maxj miniAi,j ≤
mini maxj Ai,j . Can you see why?

Now consider the following modifications to Protocol 1 and 2.

Protocol 1∗

• Alice goes first and chooses distribution p ∈ ∆m over rows

• Bob reponds by choosing distribution q ∈ ∆n over cols after seeing p

• Alice suffers loss of p>Aq = Ei∼pEj∼qAi,j

Similarly,

Protocol 2∗

• Bob goes first by choosing distribution q ∈ ∆n over cols

• Alice responds and chooses distribution p ∈ ∆m over rows after seeing q

• Alice suffers loss of p>Aq = Ei∼pEj∼qAi,j

Von Neumann’s Theorem says that Alice’s payoff in Protocol 1∗ equals her payoff in Protocol 2∗; in
other words, being allowed to delay her decision in the modified games does not give Alice an advantage.

2 Generalization error bounds for boosting

Consider choosing T in AdaBoost

• As T increases, err(HT , S) decreases as err(HT , S) ≤ exp(−2Tγ2)

• What about err(HT ,D)? We can bound is using VC dimension. Considering

HT ∈ HT :=

{
sign

(
T∑
t=1

αtht(x)

)
| ∀t, αt ∈ R and ht ∈ B

}
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Then,

err(HT , D) ≤ err(HT , S) +

√
V C(HT )

m

However, V C(HT ) depends linearly on T .

Figure 1: Graph showing showing the relationship between err(HT , S), complexity of HT , and err(HT ,D).
The bound on err(HT ,D) using VC dimension would predict that err(HT ,D) eventually increases. However,
in practice it can continue to decrease even after err(HT , S) reaches zero.

Because of this linear dependence, we would expect that err(HT ,D) to increase as T increase. However,
in practice this does not seem to be the case (cf. Figure 1). Empirically, there is a trend for err(HT ,D) to
decrease even once err(HT , S) reaches zero. Looking for an explanation to this phenomenom led to the large
margin theory for boosting.

Definition 5. For a function f and data point (x, y), the margin of f on (x, y) is yf(x).

Theorem 6. Suppose that base hypothesis class B is finite. Let

C(B) =

{∑
h∈B

αhh(x) |
∑
h∈H

|αh| ≤ 1

}

denote the set of voting classifiers over B. Fix margin θ ∈ [0, 1]. Then, given i.i.d. S ∼ D of size m, with
probability 1− δ, for all f ∈ C(B)

PD(yf(x) ≤ 0) ≤ PS(yf(x) ≤ θ) +O

(
1

θ

√
ln |B|/δ
m

)

Remark 7. Note that PD(yf(x) ≤ 0) is the error of sign(f). Furthermore, notice that the error bound
depends on ln |B| whereas the simple bound above on err(HT ,D) for AdaBoost depended on

√
T .

We can apply this to AdaBoost since

f̄t =

∑T
t=1 αtht(x)∑T

t=1 αt
∈ C(B)

Then, letting θ = γ
2 we have

1. PS(yfT ≤ γ
2 ) ≤ exp(−Tγ2) (This requires some work and is left as an exercise for the interested.)
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2. The complexity term is O

(
1
θ

√
ln |B|/δ
m

)
does not depend on the number of iterations T .

Instead of proving the theorem in this formulation, we will prove the following more general version.

Theorem 8. Suppose D is supported on {x ∈ Rd | ‖x‖∞ ≤ R∞} × {±1}. Fix value θ ∈ [0, 1]. Suppose
that S has size m and is drawn i.i.d. from D. Then, with probability 1 − δ, for any predictor w such that
‖w‖1 ≤ B1

PD(y 〈w, x〉 ≤ 0) ≤ PS(y 〈w, x〉 ≤ θ) +O

(
B1R∞
θ

√
ln d/δ

m

)
To see that we can use this theorem to get the previous one, fix B = {h1, . . . , hN}. Then, let

• x̃ = (h1(x), . . . , hN (x)) so that (x̃, y) ∼ D̃. Then, ‖x̃‖∞ = 1 =: R∞

• We let α play the role of w since
∑N
i=1 αihi(x) = 〈α, x̃〉 and ‖αi‖1 ≤ 1 for all i, so we can set B1 = 1.

• Finally, use N for d.

Remark 9. Note that this is not a standard generalization to training error bound; the left and right hand
side errors are not completely symmetric.

We start the proof now and finish it next time

Proof. Define the ramp loss `θ,w(x, y) as

`θ,w(x, y) = ϕθ(y 〈w, x〉)

where

ϕθ(z) =


1 z ≤ 0

1− z
θ z ∈ (0, θ)

0 z ≥ θ

See Figure 2, to see a comparison between the three losses we are considering.

Figure 2: Graph showing showing the three three loss functions: 0− 1 loss, margin 0− 1 loss, and the ramp
loss given by ϕθ(z).

We can show the following:
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1. With probability 1− δ, for every w such that ‖w‖1 ≤ B1

ED`θ,w(x, y) ≤ ES`θ,w(x, y) +

√
ln 2/δ

2m
+ 2Radn(F)

where
F = {`θ,w | ‖w‖1 ≤ B1}

Note that we saw the result like this in the proof of the uniform convergence theorem, so we will skip
its proof. The key points in the argument are:

• McDiaramid’s inequality

• Symmetrization

• Introducing Rademacher random variables to get Rademacher complexity

You may see such argument again in HW2, problem 3.

2.

ED`θ,w(x, y) ≥ PD(y 〈w, x〉 ≤ 0)

ES`θ,w(x, y) ≥ PS(y 〈w, x〉 ≤ θ)

Note that the first inequality uses the 0 − 1 loss on the RHS, while the second inequality uses the
margin 0− 1 loss.

3. Next class, we will focus on bounding

Radn(F) ≤ O

(
B1R∞
θ

√
ln d/δ

m

)

For this task, we will use the contraction inequality of Rademacher complexity.

The theorem follows by combining the above three items.
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