
CSC 588: Machine learning theory Spring 2021

Lecture 12: Finish SRM; Adaboost and its training error analysis
Lecturer: Chicheng Zhang Scribe: Yichen Li

In previous class, how we can choose the classifier in unfixed hypothesis class H was discussed. In
this class, we finished this topic and start the introduction and proofs of the Boosting methods, especially
Adaboost.

1 Continue on Model Selection

Q: How to use H1, ...,Hk to find a good ĥ with low error? ĥ = argminh∈∪iHi err(h, S) is not a good idea

since ĥk may not be the best among {ĥ1, ..., ĥk}.
Idea 1:Validation:

Ĥ = {ĥ1, ..., ĥk}

ĥ = argminh∈Ĥ err(h, V), where V is a fresh validation sample set.
Idea 2: Structural risk minimization(penalized ERM)

î = argmin
i∈{1,...,k}

(err(ĥi, S) +

√
ln 2k|Hi|

δ

2m
)1

Output ĥ = ĥî

Performance of Idea 2:

Claim 1. With probability 1-δ, ∀i, ∀h ∈ Hi

|err(h, S)− err(h,D)| ≤

√
ln 2k|Hi|

δ

2m

(from standard ERM analysis + union bound over all i)

Claim 2. If we use structural risk minimization, then with probability 1-δ:

err(ĥ, D) ≤ min
i∈{1,...,k}

err(h∗i , D) + 2α(Hi,m)

where,h∗i = argminh∈Hi err(h,D), α(Hi,m) =

√
ln

2k|Hi|
δ

2m

Proof. First we can write the full definition of the output.

(̂i, ĥ) = argmin
i∈{1,...,k}

min
h∈Hi

(err(ĥi, S) + α(Hi,m))

From claim 1, with probably probability 1-δ, ∀i,∀h ∈ Hi

|err(h, S)− err(h,D)| ≤ α(Hi,m)

then

1penalty for complexity term, define it as α(Hi,m)

1

err(ĥ, D) = err(ĥî, D)

≤ err(ĥî, S) + α(Hî,m)

≤ err(ĥi, S) + α(Hi,m)

≤ err(h∗i , S) + α(Hi,m)

≤ err(h∗i , D) + 2α(Hi,m)

Note that the first and last inequation come from claim 1. The second inequation comes from the optimality
of ĥî on S with respect to the penalized ERM function. The third comes from optimality of ĥi on S with
respect to the penalized ERM function in the i th hypothesis class and h∗i must belong to some hypothesis
class.

Chicheng notes: the above derivation is slightly different and improves over the derivation in the class;
the concentration factor in the lecture was 4α(Hi,m) as opposed to 2α(Hi,m).

Since ∀i the above inequation is true, we have err(ĥ, D) ≤ mini∈{1,...,k} err(h
∗
i , D) + 4α(Hi,m)

Remarks:

• α can pessimistic in practice.

• It may be possible to refine the generalization err bounds.

2 Introduction for Boosting methods

Motivation: Combine weak classification rules to obtain strong ones.
Example: When doing spam filtering, we can use ”free offer” or ”million dollar” to detect spams. These
simple words based filters are weak by individual but when combined together they can perform better.
Weak PAC Learning Theory:
γ-weak PAC learner:
Given H, we call A is a γ-weak PAC learner for H, if exists a function f : (0, 1)→ N for any δ > 0 and any
D realizable by H, with m ≥ f(δ) iid training examples, A produces a classifier h s.t. with probability 1− δ,
err(h,D) ≤ 1

2 − γ.
γ-weak PAC learnable:
H is said to be γ-weak PAC learnable if there exist a γ-weak PAC learner for H.
History:
H PAC learnable can induce H weak PAC learnable, what about the inverse?
1988 Kearns raised this question.
1990 Schapire proposed boosting, build a PAC learner with black-box access to a weak PAC learner based
on recursion.
1990 Freund proposed boost by majority, combining the outputs of weak learners by a unweighted majority
vote.
1997 Freund and Schapire proposed Adsboost(adaptive boost) which is a γ free method (only require the
weak PAC learner to be slightly better than random guess).

3 AdaBoost

Basic idea: Given training examples (x1, y1)...(xm, ym), the algorithm maintains a weighting on them
which starts with uniform and then adjusted by training errors. (Assign higher weights on examples that
were mistaken in the training process.)
Adaboost Algorithm:

Initialize (Dt=1(i) = 1
m)mi=1

2

for t = 1, . . . , T : do
Train predictor ht on weighted examples (xi, yi, Dt(i)

m
i=1)

Receive weighted error εt = P(x,y)∈Dt(ht(x) 6= y) =
∑m
i=1 I(ht(xi) 6= yi)Dt(i) ≤ 1

2 − γ
Assign classifier weight αt = 1

2 ln(1−εt
εt

)

Update weights on training samples Dt+1(i) = 1
Zt
Dt(i) exp(−αtyiht(xi)), where Zt is a normalization

factor obtained by Zt =
∑m
i=1Dt(i) exp(−αtyiht(xi)).

end for
return HT (x) = sign(

∑T
t=1 αtht(x))

Analysis:

Theorem 3. Suppose for every t, εt ≤ 1
2 − γ, then

err(HT , S) ≤ exp(−2Tγ2)

Proof steps:
1. Relax to exponential loss.
2. Adaboost optimizes exponential loss.

Proof.

err(HT , S) =
1

m

m∑
i=1

(HT (xi) 6= yi)

=
1

m

m∑
i=1

I(yifT (xi) ≤ 0)

≤ 1

m

m∑
i=1

exp(−yifT (xi))

= LT

The second equation comes from ft =
∑t
s=1 αshs(x), while the first inequation comes from I(z ≤ 0) ≤

exp(−z) which is shown below. Finally, LT is defined as 1
m

∑m
i=1 exp(−yifT (xi)).

Then we just need to show that LT (cumulative exponential loss) is decreasing exponentially to T . First,
we can take a look of Lt

Lt−1

Lt
Lt−1

=
1
m

∑m
i=1 exp(−yift(xi))

1
m

∑m
i=1 exp(−yift−1(xi))

Observation:

Dt(i) ∝ exp(−
t−1∑
s=1

αsyihs(xi)) = exp(−yift−1(xi))

3

We can see from the definition that
∑m
i=1Dt(i) = 1 and there existNt such thatDt(i) = exp(−yift−1(xi))/Nt.

Also, by definition, ft(xi) = ft−1(xi) + αtht(xi) By plugging them back to Lt
Lt−1

we have

Lt
Lt−1

=

∑m
i=1NtDt(i) exp(−yiαtht(xi))∑m

i=1NtDt(i)

=
Nt

∑m
i=1Dt(i) exp(−yiαtht(xi))

Nt
∑m
i=1Dt(i)

=

m∑
i=1

Dt(i) exp(−yiαtht(xi))

= Zt

We can see LT = LT−1ZT = L0

∏T
t=1 Zt

Finally, by upper bounding Zt we can conclude our proof.

Zt =

m∑
i=1

Dt(i) exp(−yiαtht(xi))

=
∑

i:yi=ht(xi)

Dt(i) exp(−αt) +
∑

i:yi 6=ht(xi)

Dt(i) exp(αt)

= exp(−αt) ∗ (1− εt) + exp(αt) ∗ εt

=

√
εt

1− εt
(1− εt) +

√
1− εt
εt

εt

= 2
√
εt(1− εt)

≤
√

1− 4γ2

≤ exp(−2γ2)

The third equation comes from the definition of αt = 1
2 ln(1−εt

εt
),while the first inequation comes from

εt ≤ 1
2 − γ, x2 ≥ (x− y)(x+ y) and the second inequation comes from 1− x ≤ e−x.

With Zt bounded and L0 = 1, we conclude

LT = L0

T∏
t=0

Zt ≤ exp(−2Tγ2)

4

