
CSC 588: Machine learning theory Spring 2021

Lecture 11: Error decomposition in supervised learning & Model selection
Lecturer: Chicheng Zhang Scribe: Jie Bian

In previous class, we are dealing with fixed hypothesis class H, in this class, we are talking about how
we can choose the classifier helpful for learning from the unfixed hypothesis class H.

1 Error decomposition in supervised learning

D
distribution

S
training samples

ĥ
learned classifier

err(ĥ, D)

A : learning algorithm with H

Figure 1: supervised learning pipeline

Q: What are some important factors that contribute to the generalization error of ĥ ?

1. representativeness of training example

2. complexity of ĥ (H)

3. optimization accuracy of A

4. expressiveness of H relative to D

Notation:
h′ = argmin

h∈H
err(h, S)

h∗ = argmin
h∈H

err(h,D)

Theorem 1. With probability 1-δ,

err(ĥ, D) ≤ εgen1 + εopt
2 + err(h∗, D)3 +

√
ln 1

δ

2m
4

where generalization error is defined as εgen = err(ĥ, D) − err(ĥ, S) , optimization error is defined as

εopt = err(ĥ, S)− err(h′, S)

1factor 2 is reflected here
2factor 3 is reflected here
3factor 4 is reflected here
4factor 1 is reflected in this inequality
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Proof.

err(ĥ, D) = err(ĥ, S) + εgen

= err(h′, S) + εopt + εgen

= err(h∗, S) + εopt + εgen + (err(h′, S)− err(h∗, S))

≤ 5err(h∗, D) +

√
ln 1

δ

2m
+ εopt + εgen + (err(h′, S)− err(h∗, S))

≤ 6err(h∗, D) +

√
ln 1

δ

2m
+ εopt + εgen

Remark:

1. err(h∗, D) is called the bias of H on D

2. when m is large,

√
ln 1
δ

2m can be ignored

3. tightness of the above bound:

Theorem 2. err(h∗, S) − err(h′, S) can be quite large, in this case, at least one of εgen and εopt would be
large.

Proof. From error decomposition we have:

err(ĥ, D) ≤ εgen + εopt +

√
1

m
+ (err(h′, S)− err(ĥ, S) + err(h∗, D)

since err(h∗, D) ≤ err(ĥ, D),

err(h∗, S)− err(h′, S) ≤ εgen + εopt +

√
1

m

If err(h∗, S) − err(h′, S) is large and
√

1
m is small, then εgen + εopt is large, therefore at least one of εgen

and εopt would be large.

Example 1. P(Y = 1|X) is shown in figure 3, we also have:

PX(x) =

{
1 x ∈ [0, 1]

0 otherwise

H = {2I(x ∈ ∪ki=1[ai, bi]) : k ∈ N, ai, bi ∈ [0, 1] ∀i}
Therefore, the optimal classifier with the minimum generalization error is:

h∗ = 2I(x ∈ [0.5, 1])− 1

The responding error is:
err(h∗, D) = min

h∈H
err(h,D) = 0.2

5from Hoeffding’s and is O(
√

1
m

) loose
6can be quite loose
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From Hoeffding’s:

err(h∗, S) ≥ 0.2−
√

1

m

For any sample set S (as shown in figure 2), if we assign each classifier to each sample point and make sure
any two classifiers’ intervals not overlap,then we can find such classifier minimizing the training set error:

err(h′, S) = min
h∈H

err(h, S) = 0

Figure 2: schematic diagram of sample set

Therefore

err(h∗, S)− err(h′, S) ≥ 0.2−
√

1

m

err(h∗, S)− err(h′, S) is large.
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Figure 3: example1

Ways to bring down εopt, εgen, err(h
∗, D):

εopt ↓:change the ML optimization algorithm;make H simple to optimize
εgen ↓:choose a less expressive H;collect more samples
err(h∗, D) ↓:choose a more expressive H
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Important special case:A = ERM(H) Then ĥ = h′(ERM), εopt=0, with εgen ≤
√

ln
|H|
δ

m and Theo-
rem 1, we have:

err(ĥ, D) ≤ err(h∗, D)7 + 2

√
ln 2|H|

δ

2m
8

This is called the bias-complexity tradeoff.
underfitting:this occurs when bias is too large

Example 2.
H = {linear classifier}

Figure 4: linear classifier on unlinear samples

Sometimes, underfitting can be caught by seeing err(ĥ, S) is too large.Reason of this is err(ĥ, S) is

too large⇒ err(h∗, S) is also large, and with hoeffding’s, err(h∗, S) ≈ err(h∗, D),then err(ĥ, S) is too
large⇒ err(h∗, D) is also large.

overfitting:this occurs when |H| is too large so that complexity term is too large, this also means the

generalization error εgen = err(ĥ, D)− err(ĥ, S) is large

Example 3.
err(ĥ, S) = 0

7bias
8complexity of H
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Figure 5: nonlinear classifier on linear samples

we can detect overfitting by using fresh validation set V ,that is because by Hoeffding’s, err(ĥ, D) ≈
err(ĥ, V ), therefore

εgen ≈ err(ĥ, V )− err(ĥ, S)

By checking if err(ĥ, V )− err(ĥ, S) is large we can detect overfitting.

2 Model Selection

• How can we choose a good learning algorithm in practice?

• To make it simple,we only consider ERM over hypothesis classes.

Setup: H1, ...,Hk(Hi = {decision tree with depth ≤ i})
h∗i = argmin

h∈Hi
err(h,D)

ĥi = argmin
h∈Hi

err(h, S)

Q: How to use H1, ...,Hk to find a good ĥ with low error? ĥ = argminh∈∪iHi err(h, S) is not a good idea

since ĥk may not be the best among {ĥ1, ..., ĥk}.
Idea 1:Validation:

Ĥ = {ĥ1, ..., ĥk}
ĥ = argminh∈Ĥ err(h, V ), where V is a fresh validation sample set.
Analysis:

Claim 3. With probability 1- δ2 , ∀i

err(ĥi, D) ≤ err(h∗i , D) + 2

√
ln k|Hi|

δ

2m

(from standard ERM analysis + union bound over all i)

Claim 4. With probability 1-δ,

err(ĥ, D) ≤ min
i
err(ĥi, D) + 2

√
ln 4

δ

|V |
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Claim 5. From claim 3 and 4,we can show with probability 1-δ:

err(ĥ, D) ≤ min
i

(err(h∗i , D) + 2

√
ln k|Hi|

δ

2m
) + 2

√
ln 4

δ

|V |

where |V | = Θ(m)

Claim 5 shows in this case ĥ has the best bias-complexity tradeoff.

Idea 2: Structural risk minimization( penalized ERM)

î = argmin
i∈{1,...,k}

err(ĥi, S) +

√
ln 2k|Hi|

δ

2m
)9

Output ĥ = ĥî

Example 4.
H1 ≤ H2 ≤ ... ≤ Hk

Figure 6: penalized ERM

In next class, we are going to show

err(ĥ, D) ≤ min
i∈{1,...,k}

err(h∗i , D) + 4α(Hi,m)

This proves our output also achieves near-optimal bias-complexity tradeoff.

9penalty for complexity term, define it as α(Hi,m)
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Figure 7: upper bound of error for penalized ERM
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