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1 Lower bounds for statistical learning

In previous lectures, it was shown that if we have O( dε2 ) number of training examples, then ERM has excess
error less than ε. In this lecture, let’s consider the opposite region: what if we only have O(d) examples.
Note that we will discuss learnability as a property of hypothesis class H only.

Definition 1. H is said to be agnostic PAC learnable if there exists an algorithm A and a sample complexity
function f(·, ·) such that for any distribution D, for any ε, δ > 0, if m ≥ f(ε, δ), then with probability 1− δ
over the draw of m training examples i.i.d. from D,

err(A(S), D)− min
h′∈H

err(h′, D) ≤ ε

where A(S) = ĥ.

Definition 2. H is said to be (realizable) PAC learnable if there exists an algorithm A and a sample
complexity function f(·, ·) such that for any distribution D realizable by H, for any ε, δ > 0, if m ≥ f(ε, δ),
then with probability 1− δ over the draw of m training examples i.i.d. from D,

err(A(S), D) ≤ ε

Finite VC dimension ⇒ uniform convergence ⇒ ERM sample complexity O( dε2 ) ⇒ H is PAC learnable
The following theorem shows that PAC learnable ⇒ Finite VC dimension

Theorem 3. Given a H such that V C(H) ≥ d. If the number of trainning examples m ≤ d
2 , then for any

algorithm A, there exists a distribution D realizable by H

ES∼Dm err(A(S), D) ≥ 1

4
(1)

Remark 1. Eq. (1) also implies that

PS∼Dm

(
err(A(S), D) >

1

8

)
≥ 1

8
(2)

showing that A does not (ε = 1
8 , δ = 1

9 )-PAC learnH with m ≤ d
2 examples. The reason is if A (ε = 1

8 , δ = 1
9 )-

PAC learn H with m ≤ d
2 example, then

PS∼Dm

(
err(A(S), D) >

1

8

)
≤ 1

9

which contradicts with (2). We can show (1) ⇒ (2) by the fact that for any random variable X ∈ [0, 1] with
E[X] ≥ 1

4 , then P(X > 1
8 ) ≥ 1

8 . The proof is shown as follows

E[X] = E[X1(X ≤ 1

8
)] + E[X1(X ∈ (

1

8
, 1])] ≤ 1

8
+ E[1(X >

1

8
)]

⇒ P[X >
1

8
] = E[1(X >

1

8
)] ≥ E[X]− 1

8
≥ 1

4
− 1

8
=

1

8

1



Remark 2. V C(H) = ∞ ⇒ H is not PAC learnable, because V C(H) = ∞ implies that ∀m,∀A,∃D
realizable by H

PS∼Dm

(
err(A(S), D) >

1

8

)
>

1

9

Proof of Theorem 3. We can rewrite the problem as minimax lower bound

min
A

max
D:realizable by H

ES∼Dm err(A(S), D) ≥ 1

4
(3)

Define a family as distributions P = {Db : b ∈ {±1}d}. We want to show

min
A

Eb∼U(±1)dES∼Dm err(A(S), D) ≥ 1

4

which implies (3). Find a set of unlabeled examples z1, · · · , zd shattered by H and define Db : P(x = zi, y =

bi) = 1
d (∀i = 1, · · · , d). Our first observation is all Db’s are realizable by H. Denote ĥ = A(S). We are

going to show

∀A, Eb,S err(ĥ, Db) ≥
1

4

Given h, then err(h,Db) =
∑d
i=1

1
d1(h(zi) 6= bi). We want to show

∑d
i=1 Eb,S1(h(zi) 6= bi) ≥ d

4 by showing

Pb,S(h(z1) 6= b1) ≥ 1

4
(4)

and we also can show this for other i’s. Denote unlabled sample set Sx = {x1, · · · , xm} are drawn i.i.d. from
uniform({z1, · · · , zd}), then S = {(x1, y1), · · · , (xm, ym)} are determined by Sx and b. Then

Pb,S(h(z1) 6= b1) ≥ Pb,Sx
(h(z1) 6= b1, z1 /∈ Sx)

= Pb,Sx
(h(z1) 6= b1|z1 /∈ Sx) · PSx

(z1 /∈ Sx) (5)

Note that

P(z1 ∈ Sx) = P(z1 ∈ ∪i{xi}) ≤
m∑
i=1

P(z1 = xi) =
m

d
≤ 1

2

which implies PSx(z1 /∈ Sx) ≥ 1
2 . On the other hand, conditioned on z1 /∈ Sx, ĥ(z1) is independent of b1,

then

Pb,Sx
(ĥ(z1) 6= b1|z1 /∈ Sx) =

1

2

Thus, (5) can be rewritten as Pb,S(ĥ(z1) 6= b1) ≥ 1
2 ·

1
2 = 1

4 , which finishes the proof of (4) and the whole
proof.

2 Review of what we learned

Definition 4. H is said to satisfy the uniform convergence property if there exists a function fu : (0, 1)2 → N
such that for any D, for any ε, δ > 0, if m ≥ fu(ε, δ), then w.p. 1 − δ over the draw of m i.i.d. training
examples from D

∀h ∈ H, | err(h, S)− err(h,D)| ≤ ε

Theorem 5 (The fundamental theorem of statistical learning). The following statements are equivalent

1. H satisfies the uniform convergence property (Definition 4)

2



2. H is agnostic PAC learnable with ERM

3. H is agnostic PAC learnable

4. H is (realizable) PAC learnable

5. H has finite VC dimension

Proof. By showing cycling implication.

• 1⇒ 2: set the sample size to be greater than fu(ε/2, δ), then by definition | err(h, S)−err(h,D)| ≤ ε/2
w.p. 1− δ, which is the sufficient condition for the ERM to achieve excess error rate at most ε (as we
discussed before)

• 2⇒ 3: trivial

• 3⇒ 4: seen before

• 4⇒ 5: just proved (Theorem 3)

• 5 ⇒ 1: last class of uniform convergence (by symmetrization, Rademacher random variables and
Massart’s Lemma)

Interpretation of finite VC dimension. For S which is a set of observations in the real-world, regard H
as scientific theory. If the scientific theory is too complicated (i.e., H has infinite VC dimension), then there
might not be a reliable way of using this theory to make future prediction with scientific outcomes.

3 Appendix: Exercises

Problem 1. Can we bound the following term using Massart’s Lemma?

ES,S′∼Dm

[
sup
f∈F

ESf(Z)− ES′f(Z)

]
(6)

Problem 2. Upper bound (6) by

ES∼Dm sup
f∈F

ESf(Z) + ES′∼Dm sup
f∈F

(−ES′f(Z))

without introducing Rademacher random variables. Will the proof still go through?
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