CSC 588: Machine learning theory Spring 2021

Lecture 10: Lower bound of sample complexities of VC classes
Lecturer: Chicheng Zhang Scribe: Xiaolan Gu

1 Lower bounds for statistical learning

In previous lectures, it was shown that if we have O(e%) number of training examples, then ERM has excess
error less than e. In this lecture, let’s consider the opposite region: what if we only have O(d) examples.
Note that we will discuss learnability as a property of hypothesis class H only.

Definition 1. H is said to be agnostic PAC learnable if there exists an algorithm A and a sample complexity
function f(-,-) such that for any distribution D, for any €,6 > 0, if m > f(e,0), then with probability 1 — ¢
over the draw of m training examples i.i.d. from D,

err(A(S), D) — }{pel% err(h/,D) < e

where A(S) = h.

Definition 2. H is said to be (realizable) PAC learnable if there exists an algorithm A and a sample
complexity function f(-,-) such that for any distribution D realizable by H, for any e, 6 > 0, if m > f(e,9),
then with probability 1 — § over the draw of m training examples i.i.d. from D,

err(A(S),D) <e
Finite VC dimension = uniform convergence = ERM sample complexity O(%) = H is PAC learnable

The following theorem shows that PAC learnable = Finite VC dimension ‘

Theorem 3. Given a H such that VC(H) > d. If the number of trainning examples m < %, then for any
algorithm A, there exists a distribution D realizable by H

1
Eg~pm err(A(S), D) > 1 (1)
Remark 1. Eq. (1) also implies that
1 1
]PSND"” (err(A(S),D) > 8> Z g (2)

showing that A does not (e = §,8 = §)-PAC learn H with m < 4 examples. The reason is if A (€ = .0=1)-
PAC learn H with m < % example, then

1

9

Ps..pn (err(A(S),D) > ;) <

which contradicts with (2). We can show (1) = (2) by the fact that for any random variable X € [0, 1] with

E[X] > 1, then P(X > £) > £. The proof is shown as follows

E[X] = E[X1(X < )] + EIX1(X € (5, 1)) < § +E[L(X > )]
- IP’[X>%}:E[1(X>é)]ZE[X]—ézi—%:%



Remark 2. VC(H) = oo = H is not PAC learnable, because VC(H) = oo implies that Vm,V.A, 3D
realizable by H
1 1

]PSNDm (err(A(S),D) > 8> > §

Proof of Theorem 3. We can rewrite the problem as minimax lower bound

e

min

Eg~pm err(A(S), D) >
A Direatizable by 7 5~P err(A(S), D) =

Define a family as distributions P = {D;, : b € {£1}?}. We want to show

o~ =

mjn EbNU(il)dESNDm err(.A(S), D) Z

which implies (3). Find a set of unlabeled examples 21, - - - , z4 shattered by H and define Dy, : P(z = z;,y =

b)) =% (Vi =1,---,d). Our first observation is all D,’s are realizable by #. Denote h = A(S). We are

going to show
1

4
Given h, then err(h, Dy) = ijl 11(n(2;) # b;). We want to show Z?Zl Ep,s1(h(z;) # b;) > % by showing

VA, Epg err(ﬁ,Db) >
1
Py, s(h(z1) # b1) > 1 (4)

and we also can show this for other i’s. Denote unlabled sample set S, = {x1,- - , 2, } are drawn i.i.d. from
uniform({z1,- - ,24}), then S = {(z1,v1), - , (Tm, Ym)} are determined by S, and b. Then

Py s(h(z1) # b1) > Pyg, (h(z1) # b1, 21 ¢ Sz)

= Pp,s, (h(21) # b1]z1 ¢ Sz) - Ps, (21 ¢ Si) (5)
Note that
P(z1 € S,) = P(z1 € Upfa}) < ;P(zl —) =" < %

which implies Pg, (21 ¢ S;) > 4. On the other hand, conditioned on z; ¢ S,, h(z1) is independent of by,
then

. 1

Py.s, (h(z1) # bilz1 € Sz) = 5

Thus, (5) can be rewritten as Py g(h(21) # by) > 1.1 = 1 Wwhich finishes the proof of (4) and the whole

proof. O

2 Review of what we learned

Definition 4. H is said to satisfy the uniform convergence property if there exists a function f, : (0,1)2 - N
such that for any D, for any €, > 0, if m > fu(¢,0), then w.p. 1 — ¢ over the draw of m i.i.d. training
examples from D

Vh e H, |err(h,S)—err(h,D)| <e

Theorem 5 (The fundamental theorem of statistical learning). The following statements are equivalent

1. H satisfies the uniform convergence property (Definition 4)



2. H is agnostic PAC learnable with ERM
3. H is agnostic PAC learnable
4. H is (realizable) PAC learnable
5. H has finite VC dimension
Proof. By showing cycling implication.

e 1 = 2: set the sample size to be greater than f,(e/2,d), then by definition | err(h, S) —err(h, D)| < ¢/2
w.p. 1 — 4, which is the sufficient condition for the ERM to achieve excess error rate at most € (as we
discussed before)

e 2 = 3: trivial

e 3 = 4: seen before

4 = 5: just proved (Theorem 3)

e 5 = 1: last class of uniform convergence (by symmetrization, Rademacher random variables and
Massart’s Lemma)

O
Interpretation of finite VC dimension. For S which is a set of observations in the real-world, regard H
as scientific theory. If the scientific theory is too complicated (i.e., H has infinite VC dimension), then there
might not be a reliable way of using this theory to make future prediction with scientific outcomes.

3 Appendix: Exercises

Problem 1. Can we bound the following term using Massart’s Lemma?
Es,siwpm |sup Esf(Z) — Es f(Z) (6)
fer

Problem 2. Upper bound (6) by

Eg~pm sup Esf(Z) + Eg/~pm sup (—]Es/f(Z))
fer fer

without introducing Rademacher random variables. Will the proof still go through?



