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Lecture 9: Proof of the uniform convergence theorem for VC classes
Lecturer: Chicheng Zhang Scribe: Yinan Li

1 Three Lemmas used in the proof of Uniform Convergence

In the last lecture, we have seen the proof of the Uniform Convergence via the following three Lemmas.

Lemma 1. With probability 1− δ/2

sup
f∈F

ES [f(z)]− ED[f(z)] ≤ E

[
sup
f∈F

ES [f(z)]− ED[f(z)]

]
+

√
ln(4/δ)

2n

Lemma 2.

E

[
sup
f∈F

ES [f(Z)]− ED[f(Z)]

]
≤ 2 Radn(F)

where
Radn(F) = ES∼Dn RadS(F)

is the expectation of empirical Rademacher Complexity, and

RadS(F) =
1

n
· Eσ∼U(±1)n [sup

f∈F

n∑
i=1

f(Zi)σi].

Lemma 3. For any set S of size n

RadS(F) ≤
√

2 ln (S(F , n))

n

Lemma 1 reduces the data dependent concentration quality to the distribution dependent concentration
quality. Lemma 2 further bounds this distribution dependent quality by Rademacher complexity. Note that
it reduces bounding the supremum of a possibly infinite collection to the supremum of a finite collection.

In this lecture, we prove these Lemmas.

2 Proof of Lemma 1

Proof.

Lemma 4 (McDiarmid’s Lemma). g is c-sensitive, X1, . . . , Xn are i.i.d from distribution D on V. Then
with probability 1− δ′,

|g(X1, . . . , Xn)− Eg(X1, . . . , Xn)| ≤ c ·
√
n

2
ln(

2

δ′
).

Define g(x1, . . . , xn) = supf∈F [ESf(Z)− EDf(Z)], where S = {x1, . . . , xn} .

We show that g is c-sensitive with c = 1
n . Denote by F (f) = ESf(Z) − EDf(Z), which is actually the

inner part of g(x1, . . . , xi, . . . , xn), denote by G(f) the corresponding inner part of g(x1, . . . , x
′
i, . . . , xn). It

is easy to see that F (f)−G(f) ≤ 1
n .
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Suppose F (f0) = supf∈F F (f), then

F (f0) ≤ G(f0) +
1

n
≤ sup
f∈F

G(f) +
1

n

which implies that g is 1
n -sensitive.

Now we are ready to apply McDiarmid’s Lemma with δ′ = δ/2, which gives us

g(X1, . . . , Xn) ≤ Eg(X1, . . . , Xn) +

√
ln(4/δ)

2n
.

3 Proof of Lemma 2

Proof. Step 1: Symmetrization (double sampling trick). This step is to show that

ES∼Dn sup
f∈F

[ESf(Z)− EDf(Z)] ≤ ES,S′∼Dn sup
f∈F

[ESf(Z)− ES′f(Z)]

(Think of S and S′ as training and validation dataset of the same size, so the RHS is evaluating the difference
between the train error and test error, and taking the maximum over functions. RHS is already the supremum
over a finite collection of size at most 22n, furthermore, it is at most S(F , 2n). )

Proof. It suffices to show that

sup
f∈F

[ESf(Z)− EDf(Z)] ≤ ES′∼Dn sup
f∈F

[ESf(Z)− ES′f(Z)]

for all realizations of S. To see why this is true, note that the LHS is deterministic, and EDf(Z) =
ES′∼DnES′f(Z), as well as the following observation.

Claim 5. Suppose G is a random function, then

sup
f∈F

EG(f) ≤ E sup
f∈F

G(f)

Proof. Suppose f0 = argmaxf∈F EG(f). Then we have

EG(f0) ≤ E sup
f∈F

G(f)

Back to the proof of Step 1, taking expectation with S ∼ Dn, we get the symmetrization Lemma.

Step 2: Introducing random signs.

Claim 6.
1

n
ES,S′∼Dn sup

f∈F

[
n∑
i=1

f(Zi)− f(Z ′i)

]
=

1

n
ES,S′∼Dn sup

f∈F

[
n∑
i=1

(f(Zi)− f(Z ′i))σi

]
for all σ1, . . . , σn ∈ {±1}. Furthermore,

1

n
ES,S′∼Dn sup

f∈F

[
n∑
i=1

f(Zi)− f(Z ′i)

]
=

1

n
ES,S′∼Dn,σ∼U(±1)n sup

f∈F

[
n∑
i=1

(f(Zi)− f(Z ′i))σi

]
(Recall that U(±1) is the uniform distribution over {−1,+1}, also known as the Rademacher distribution.)
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Remark 7. Chicheng notes: The second part of the claim above was only briefly touched upon in the lecture.
However, it is very important, because we are going to upper bound it further in the next step.

Example 1. Suppose n = 2. σ1 = −1, σ2 = +1.

EZ1,Z2.Z′
1,Z

′
2∼D4 sup

f∈F
(f(Z1)− f(Z ′1) + f(Z2)− f(Z ′2)) = EZ1,Z2.Z′

1,Z
′
2∼D4 sup

f∈F
(f(Z ′1)− f(Z1) + f(Z2)− f(Z ′2))

this is because (Z1, Z
′
1, Z2, Z

′
2) has the same distribution as (Z ′1, Z1, Z2, Z

′
2).

Step 3: This step is to show that

1

n
ES,S′∼Dn,σ∼U(±1)n sup

f∈F

[
n∑
i=1

(f(Zi)− f(Z ′i))σi

]
≤ 2 Radn(F).

Proof. By the fact that supf (A(f) +B(f)) ≤ supf A(f) + supf B(f),

LHS =
1

n
ES,S′∼Dn,σ∼U(±1)n sup

f∈F

[
n∑
i=1

f(Zi)σi −
n∑
i=1

f(Z ′i)σi

]

≤ 1

n
(ES,σ sup

f∈F

n∑
i=1

f(Zi)σi + ES′,σ sup
f∈F

n∑
i=1

f(Z ′i)(−σi))

≤2ES,σ sup
f∈F

n∑
i=1

f(Zi)σi

≤2 Radn(F).

Combining Step 1-3,
E sup
f∈F

[ESf(Z)− EDf(Z)] ≤ 2 Radn(F)

4 Proof of Lemma 3

Proof. For all (b1, . . . , bn) ∈ ΠF (S), there exists an f from F , such that it achieves this labeling. Denote by
FS the set of representatives f ’s picked in above way, |FS | ≤ S(F , n). Therefore.

RadS(F) =
1

n
Eσ sup

f∈F

n∑
i=1

f(Zi)σi

Lemma 8 (Massart’s Finite Lemma). Suppose X1, . . . , XN are zero mean, σ2-subgaussion, then

E[
N

max
i=1

Xi] ≤ σ
√

2 lnN

Proof. For ∀t > 0,

max
i
Xi ≤

ln(
∑N
i=1 e

txi)

t
.
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Therefore,

Emax
i
Xi ≤

E ln(
∑N
i=1 e

txi)

t

≤
ln(E

∑N
i=1 e

txi)

t

≤ lnN

t
+
σ2t

2

where these inequalities are by taking expectation, Jensen’s Inequality and subgaussian properties, respec-

tively. Now we are free to choose t to minimize the RHS. By picking t =
√

2 lnN
σ2 ,

E[max
i
Xi] ≤ σ

√
2 lnN

This Lemma is tight up to constant. Consider X1, . . . , XN ∼ N(0, σ2), for a fixed N and any i, with
probability at least 1

N , Xi ≥ σ
√

lnN . Because there are N trials, the expectation of numbers of Xi’s that lie

on the right of σ
√

lnN is greater than 1. This concludes that E[maxNi=1Xi] ≥ cσ
√

lnN for some constant c.
Now back to the proof of Lemma 3. Define Xf =

∑n
i=1 f(Zi)σi for any f ∈ F . Xf is zero mean and

σ2-subgaussion with σ2 = n. Applying Massart’s Lemma, we have

E sup
f∈F

Xf ≤
√
n · 2 lnS(F , n),

which gives

RadS(F) ≤
√

2 ln (S(F , n))

n
.
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