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1 Sauer’s Lemma

The Sauer’s Lemma tells how many labelings can a hypothesis class, H, generate for a sequence of unlabeled
examples, S.

Lemma 1. Suppose we have a non-empty hypothesis class H and a sequence of unlabeled examples S =
(x1, ...xn), such that:

|ΠH(S)| ≤ |{T ⊆ S : H shatters T}|.
Consequently, if VC(H) = d, then

|{T ⊆ S : H shatters T}| ≤ {T ⊆ S : |T | ≤ d} ≤
d∑

i=0

(
n

i

)
=

(
n

≤ d

)
,

such that,
(

n
≤d
)

is a polynomial in n with exponent d.

Remark: The converse of the Sauer’s Lemma is true up to log factors. That is, if we can show

S(H, n) ≤
d∑

i=0

(
n

i

)
,

for any n, then
V C(H) ≤ O(d ln d).

The proof of the converse is left as an exercise.

1.1 Proof

Sauer’s Lemma can be proved by induction on n, the size of S.

Proof. Using n = 1 as our base case, we have two situations to consider:

1. H agrees on x1:
In this case all classifiers h ∈ H will predict one label unanimously, h : x1 → +1. Consequently, X1

would not be shattered by H, which then would only shatter ∅. Therefore,

|ΠH(S)| = 1
|{T ⊆ S : H shatters T}| = 1

2. H disagrees on x1:
In this case, we can find two classifiers h ∈ H that disagree on x1. That is, suppose we have h1, h2 ∈ H
such that h1 : x1 → +1 and h2 : x1 → −1. Therefore,

|ΠH(S)| = 2

And, since H shatters both X1 and ∅, we have:

|{T ⊆ S : H shatters T}| = 2.

And so the base case holds since |ΠH(S)| ≤ |{T ⊆ S : H shatters T}| for both situations.
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Now to apply induction on n, we assume that ∀S′ of size n− 1,

|ΠH(S′)| ≤ |{T ⊆ S′ : H shatters T}|

as our inductive hypothesis. Now to prove for Sauer’s lemma holds for n ≥ 2, we need an upper-bound for
|ΠH(S)|, where |S| = n. Also, set S′ = {x1, ..., xn−1} and note that in this notation, S = S′ ∪ {xn}.
HS : for every label (l1, ..., ln) in |ΠH(S)|, we select one representative in H and add it to HS such that

|HS | = |ΠH(S)|.
Consider the example where n = 3, then Hs generates all possible labels except x1 → +1, x2 → −1, and

x3 → +1. Now, to achieve the goal of upper-bounding the cardinality of Hs, we need to decompose Hs into
two parts. Still considering n = 3, we know S′ = {x1, x2} and S = S′ ∪ {x3}, and so for every label on
S′ : (l1 = −1, l2 = −1), any two hi ∈ Hs, where i = {1, ..., 7}, will achieve the mentioned labels. Now, to
decompose Hs for n = 3,

1. if both (l1, l2,+1) and (l1, l2,−1) are achievable by Hs, send one classifier to H1 and send the other to
H2.

2. if only one of (l1, l2,+1) and (l1, l2,−1) is achievable by Hs, then we send the classifier to H1, giving
H1 the priority.

This can be further generalized to any n. Note that |H1| ≥ |H2|, since H1 is prioritized.

Observations:

1. |H1| = |ΠH1
(S′)| and |H2| = |ΠH2

(S′)|. This is because all classifiers h ∈ H1 and H2 generate unique
labelings in S′.

2. If T ⊆ S′ and H1 shatters T , then Hs shatters T . Consider an example where H1 shatters {x1, x2},
then Hs also shatters {x1, x2} because H1 ⊂ Hs.

3. If T ⊆ S′ and H2 shatters T , then Hs shatters T ∪ {xn}. Consider an example where H2 shatters
{x2}, then Hs shatters {x2, x3}. In general, if H2 achieves b1, ..., b|T | on T , then H will achieve both
(b1, ..., b|T |,+1) and (b1, ..., b|T |,−1) on T ∪ {xn}.

Using these observations, we can conclude that

|Hs| = |H1|+ |H2|
= |ΠH1(S′)|+ |ΠH2(S′)| (by observation 1)

≤ |{T ⊆ S′ : T shattered by H1|+ |{T ⊆ S′ : T shattered by H2}|
≤ |{T ⊆ S′ : T shattered by Hs| (by observation 2)

+ |{T ⊆ S′ : T ∪ {xn} shattered by Hs}| (by observation 3).

Note that |{T ⊆ S′ : T ∪ {xn}. shattered by Hs| = |{T ⊆ S : Xn ∈ T, T shattered by Hs|, that is both
L.H.S and R.H.S have the same cardinality as there is a one-to-one correspondence between their elements.
Using this, we have:

=⇒ |{T ⊆ S′ : T shattered by Hs|+ |{T ⊆ S′ : T ∪ {xn} shattered by Hs}|
= |{T ⊆ S : T shattered by Hs}|.

Note: |H1| ≥ |H2|; this can also be seen by noticing that |{T ⊆ S′ : T shattered by Hs| ≥ |{T ⊆ S′ :
T ∪ {Xn} shattered by Hs}|.
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1.2 Applications for bounding VC dimensions of hypothesis classes

Consider an example with a base hypothesis class H with VC(H) = d. Let k by an odd number such that,

Hmaj,k = {maj(h1(X), ..., hk(X) : h1, ..., hk ∈ H)}, where maj(y1, ..., yn) =

{
+1 |{i, yi = +1}| > k/2

−1 |{i, yi = +1}| ≤ k/2
.

Can we bound VC(H(maj,k))?

Claim: S(H(maj,k), n) ≤ nk(d+1). Since VC(H(maj,k)) = max{n : 2n = S(H(maj,k))}, the n that satisfies
2n = S(H(maj,k)) is upper-bounded. That is, the growth function S(H(maj,k) is polynomial and so equating
it with the exponential function 2n, there must exist a size point, n∗, such that VC dimension is upper
bounded by that n∗ (Figure 1).

Figure 1: Comparison of a polynomial S(Hmaj,k, n) meeting a exponential function 2n at n∗.

Suppose we are given a dataset x1, ..., xn, how many labels can be generated using the majority class? By
Sauer’s lemma, we know that for each hi ∈ H : i = 1, ..., k, the number of labels is upper-bounded by nd+1.
The key observation here is that after fixing the labels of base classifiers of n examples, the behavior of the
majority class is determined. Therefore, the number of possible configurations for maj(h1, ..., hk) ≤ (nd+1)k,
which is the upper-bound of the growth function S(Hmaj,k, n).

Now, using this (nd+1)k and intuition of the plots from Figure 1, we need to find an upper-bound of the
VC-dimension. Suppose n : 2n ≤ (nd+1)k. Therefore, n ≤ 2(d+ 1)k lnn. Using Lemma 2 mentioned below,
letting a = 2(d+ 1)k and b = 0, we have n ≤ 4(d+ 1)k ln(4(d+ 1)k) = Õ(d · k).

This proves that VC(Hmaj,k) = Õ(d · k). Notice here that if the base class is expressive, the composite
class will also be expressive. Similarly, if k is higher, that is, if more base case classifiers are aggregated
together, then the resulting classifier will be more complicated.

Note that if Hmaj,k function is replaced by any other function Hf,k, the VC-dimension of the resulting

class will still be upper-bounded by (nd+1)k, with the Õ(d ·k). In this case, the bound can be loose for some
’simple’ f .

Lemma 2. Given a ≥ 1/2 and b > 0, if x ≤ a lnx+ b, then x ≤ 2a ln(2a) + 2b.
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Proof.

Given: ln
x

2a
≤ x

2a

=⇒ lnx ≤ x

2a
+ ln(2a)

= x ≤ a lnx+ b

≤ x

2
+ a ln(2a) + b

=⇒ x

2
≤ +a ln(2a) + b

=⇒ x ≤ 2a ln(2a) + 2b

2 Uniform Convergence

Recall that if H has a finite V C-dimension then with high probability all classifier’s empirical error will
concentrate around its generalization error.

Theorem 3. Given a hypothesis class H with V C(H) = d, a set of n i.i.d. training examples (X1, Y1), ..., (Xn, Yn)
from D, then with probability 1− δ,

sup
h∈H
|err(h, S)− err(h,D)| ≤ c1

√
d ln d

n + ln 1/δ

n
,

for some constant c1.

Note that if a class has a larger V C-dimension then the uniform control of empirical error to the general-
ization error will be looser. When sample size increases we expect the empirical error to concentrate around
the generalization error.

Consequently, ERM on H has an agnostic PAC sample complexity of

f(ε, δ) = O
(

1

ε2

(
d ln

1

ε
+ ln

1

δ

))
.

This implication holds because err(ĥ,D)−minh′∈H err(h′,D) ≤ Õ
(√

d
n

)
≤ ε, when n ≥ Õ( d

ε2 ). We can

achieve the agnostic PAC learning goal by showing that Õ
(√

d
n

)
≤ ε.
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