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1 Growth Function and VC Dimension

Previously we have discussed the VC dimension and the notion of a hypothesis class H shattering some set
of data points S. Now we will introduce the growth function as it relates to these concepts.

Definition 1. Suppose we have a dataset x1, . . . , xn of size n . Then growth function S(H, n) is defined as
follows:

S(H, n) = max
x1,...,xn

|ΠH({x1, . . . , xn})|.

Example 1. Suppose we have two distinct points x1, x2 ∈ R with x1 < x2 and let H be the threshold class.
Note that, if we let t be the threshold value, we can generate three distinct labeling for these points by choosing
t < x1, x1 < t < x2, or x2 < t. So, since H can generate three possible labelings on this dataset, we have
S(H, 2) = 3.

Now note that if we have S(H, n) = 2n then there exists a dataset of n points for which we can generate
all 2n possible labelings. So, S(H, n) = 2n implies that there is a dataset of size n shattered by H. Using
this observation, we can rewrite the VC dimension definition using the growth function:

VC(H) = max{n : S(H, n) = 2n}.

Next, we consider the following theorem, which provides some motivation for why we are interested in
the VC dimension.

Theorem 2. Suppose we have a hypothesis class H with V C(H) = d < ∞ and a set of n i.i.d. examples
(x1, y1), . . . , (xn, yn) drawn from D. Then, with probability 1− δ

sup
h∈H
| err(h, S)− err(h,D)| ≤ c

√
d ln(n/d) + ln(2/δ)

n
.

This theorem states that if a hypothesis class has a finite VC dimension then the empirical error will
concentrate around the generalization error for all classifiers in this class. With this theorem, we can apply
the same analysis for empirical risk minimization that we talked about last time. We can conclude that the
for the ĥ obtained via ERM,

err(ĥ,D) ≤ min
h∈H

err(h,D) + Õ(
√
d/n)

which implies that H is agnostic PAC learnable by ERM. So, we can think of this theorem as a generalization
of the previously developed theorem of agnostic PAC learnabiliy for finite hypothesis classes.

Note that we use the notation Õ to be big O notation where log factors are ignored.
Next we will talk about some of the properties of the growth function and VC dimension.

Lemma 3. If |H| <∞, then the following two statements hold:

1. S(H, n) ≤ |H|

2. VC(H) ≤ log |H|.

To see why the first statement is true, consider that there are only |H| classifiers in H. So we can generate
at most |H| different labelings. Now to see why the second statement holds, recall that VC(H) = max{n :
S(H, n) = 2n}. By statement 1 we have that S(H, n) = 2n ≤ |H|. So if we take the log of both sides we
obtain n ≤ log |H|. Thus, VC(H) must be less than log |H|.
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2 Examples

1. threshold class

VC(H) = 1 (shown in previous lecture)
S(H, n) = n+ 1

To see why we have this second result, consider the distinct points x1, . . . , xn and begin with a threshold
to the left of all the points. Now as we move the threshold in the positive direction, every time we
cross a point the number of labelings induced increases for one. Thus, we have a total of n+ 1 distinct
labelings.

2. interval class in [0, 1] This class is formally defined by

H = {ha,b(x) = 2I(a ≤ x ≤ b)− 1 : 0 ≤ a ≤ b ≤ 1}.

We want to find VC(H) and S(H, n).

To find VC(H) consider the case where we have two distinct points x1 and x2 with x1 < x2. We can
show that this dataset is shatterable by H. If both points have a positive label then we can choose the
interval a < x1 < x2 < b and if both points have a negative label then we can choose 0 < a < b < x1.
For the case where only one point has a positive label we can choose the interval to contain only the
positive point. So if we assume without loss of generality that x1 has a positive label and x2 has a
negative label, then we can choose a < x1 < b < x2. Thus, all possible labels for this dataset can be
generated by H and we can conclude that H shatters this dataset.

However, we can also show that H is incapable of shattering any dataset with three points. To see
this consider a dataset with three points x1 < x2 < x3 and the labeling (+,−,+). Note that if
ha,b(x1) = +1 then we must have x ≤ x1 and if ha,b(x3) = +1 then we must have b ≥ x3. However,
this necessarily implies that a < x2 < b which would give us that ha,b(x2) = +1. Thus, datasets of size
three are not shatterable by H.

Now since there is a dataset of size 2 that is shatterable and no dataset of size 3 that is shatterable,
we can conclude that VC(H) = 2.

Next we consider S(H, n). Note that there are
(
n
2

)
ways to choose the boundary points such that

they include at least two points,
(
n
1

)
labelings with only one positive point, and

(
n
0

)
labelings with no

positive points. Thus, the growth function is

S(H, n) =

(
n

2

)
+

(
n

1

)
+

(
n

0

)
.

3. homogeneous linear classifiers in Rd This class is formally defined by

H = {hw(x) = 2I(w · x > 0)− 1 : w ∈ Rd}.

Note that this class of classifiers is the set of linear classifiers with normal vector w that pass through
the origin.

To find VC(H) we will begin by building some intuition with the d = 2 case. If we have one point
in the first quadrant and one point in the second quadrant, as is shown in Figure 1, then there are
classifiers in H that can generate any of the possible labelings of these points. If they have the same
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label then the separating line shown in black (with normal w also shown in black) in Figure 1 will
produce this classification. Note rotating a separating line (and associated normal) 180 degrees will
result in the same separating line but the normal will be pointing in the opposite direction, so the
labelings generated will be the negative of what they were originally. So, the separating line in black
could generate either the (+,+) labeling or the (-,-) labeling depending on which way w is pointing.
Similarly, we can pick w normal to the separating line shown in red to generate either set of labels
where the signs are different. That is, (+,-) or (-,+). Thus, we can generate all possible labelings for
this dataset of size 2. So we know that VC(H) ≥ 2.

Figure 1: labelings for 2 points in 2 dimensions

Next, we consider the case where we have three points in two dimensions. Note that in this case if we
are not able to draw a line that puts all three points on one side of the line, then we cannot generate
labelings with all the same sign (such as (+,+,+)). If, however, we can find a w such that we can put
all points on one side of the line normal to w, then we cannot generate the labeling (+,-,+). This is
illustrated in Figure 2. Thus, we can conclude that any three points are not shatterable by H. So for

Figure 2: three points on one side of a line

d = 2 we have V C(H) = 2.

Now we consider the general case for dimension d. To begin, we claim that H can shatter and linearly
independent points, x1, . . . , xd. To see why this is the case consider the linear prediction on this set of
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examples:

sign

(x
T
1
...
xTd

 ·w) =

sign(〈w, x1〉)
...

sign(〈w, xd〉)


Note that since we have d vectorsxi, each of which is linearly independent, we have that any other
vector in Rd can be described as a linear combination of these vectors. That is,

{X ·w : w ∈ Rd} = Rd.

Now if we consider the labeling l = (l1, . . . , ld) ∈ {+1,−1}d we have that l = sign(X ·w). We can find
w that satisfies this by solving w = X−1l. Thus, a set of d linearly independent points is shatterable.

Next we claim that any set of d + 1 points is not shatterable by H. To show this, note that for any
d+ 1 points we can find a1, . . . , ad+1 not all zero and and such that there exists some i∗ with ai∗ > 0
such that

d+1∑
i=1

aixi = 0.

Now we define l as follows

li =

{
+1 ai > 0

−1 ai ≤ 0

for all i = 1, . . . , d+1. If there exists w that achieves the labeling l then for all ai > 0 corresponding to
li = +1 then we must have wixi > 0 and for ai ≤ 0 corresponding to li = −1 we must have wixi ≤ 0.
Then the sum

d+1∑
i=1

ai〈w, xi〉 ≥ 0.

Further, since we have some ai∗ > 0 there is some term ai∗〈w, xi〉 > 0. This implies that the sum must
be strictly positive:

d+1∑
i=1

ai〈w, xi〉 > 0.

This contradicts our assumption
d+1∑
i=1

aixi = 0.

Thus, we have shown that there is not set of d+1 points that are shatterable by H. So, we can conclude
that VC(H) = d.

4. non-homogeneous linear classifiers in Rd This class is formally defined by

H = {hw,b(x) = 2I(w · x + b > 0)− 1 : w ∈ Rd, b ∈ R}.

We can show that VC(H) = d+ 1 but this is left as an exercise.

3 Sauer’s Lemma and a Theorem

Lemma 4. Suppose we have a hypothesis class H with VC(H) = d and that we have n data points x1, . . . , xn.
Then,

S(H, n)

{
= 2n n ≤ d
≤
∑d

i=0

(
n
i

)
n > d
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Note that

d∑
i=0

(
n

i

)
≤

{
nd+1 n ≥ 2(
e·n
d

)d
n ≥ d+ 2

.

So, this growth function upper bound is polynomial instead of exponential in the size of in n.

Theorem 5. Suppose we have a hypothesis class H with VC(H) = d and n points S = {x1, . . . , xn}. Then,

|ΠH(S)| ≤ |{T ⊆ S : H shatters T}|.

Note that if H shatters T then |T | ≤ d. So,

|ΠH(S)| ≤ |{T ⊆ S : H shatters T}|
≤ {T ⊆ S : |T | ≤ d}

≤
d∑

i=0

(
n

i

)
where the last inequality follows from the fact that for each |T | = i we have

(
n
i

)
different choices of T .
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