CSC 588: Machine learning theory Spring 2021

Lecture 5: Agnostic PAC learning and VC theory
Lecturer: Chicheng Zhang Scribe: Alonso Granados

1 Analysis of ERM in nonrealizable settings

In the previous lectures, we learned that the consistency algorithm PAC learns hypothesis H where H is finite
and the iid samples are D realizable with respect to H. Now we will remove the realizability assumption as
in many practical problems this assumption does not hold.

Again we consider the ERM for the training set, h = argming, 4, err(h, S), but now that we don’t assume
that D is realizable with respect to H. Because of noiseness of the training example It is possible that the
true optimal, h* = argmin, 4, err(h, D), is not returned by ERM. In figure 1, we present an example where
ERM would pick the hypothesis hg despite it is the worst hypothesis.
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Figure 1: An example from training and generalization error.

To address this problem, we propose to bound the interval for which the training error is located with
respect to the generalization error. We consider the event A,

Vh € H : |err(h,S) —err(h,D)| < u

Assume that A happens. In this setting, we would like to provide an upper bound on err(h, D). We
define v = minpey err(h, D) and using the optimality of ERM

err(h, S) < err(h*, S)
Using our bound assumption,

err(h*,S) <~y +u

and

err(h, D) < err(h, S) + p < v + 2u
Now we want to find p such that event A has high probability 1 — . Let’s check that

A = Npepd{|err(h, S) — err(h, D)| < u}

We consider the compliment to use the Union Bound inequality,



P(A%) = P(Unen{|err(h, S) — err(h, D)| > pu}) < Y P({|err(h, S) — err(h, D)| > p})
heH
Using the Hoeffding’s inequality,

P(A%) < 37 2e72m < [3q[2e 2
heH
We choose § = |H[2e~ 2",
Therefore, with probability 1 — §, A happens and err(ﬁ, D) < minpey err(h, D) + 24/ % This
gives the following theorem.

Theorem 1. Suppose H is finite. If the ERM algorithm is given m iid examples from D, then with probability
1 -9, its output h is such that

. In|H|+1In2
< mi \/ .
err(h, D) < min err(h, D) + 2 o (1)

In other words, it Agnostic PAC learns hypothesis class H with sample complexity m(e,0) = 6%(ln |H|+1n %)

2 Inifinite classes can be PAC learnable

In general, if H is infinite, Theorem 2 will give vacuous guarantees as the error bound is infinite. Can we
develop general tools for analyzing ERM for infinite hypothesis classes? First, let’s see an example showing
that there may be hope achieving this.

We will consider a problem where |#| is infinite:

X =0,1]

y={1,-1}
H={h:2Z(x >t) - 1;t € [0,1]}

and D realizable by hy« with example x ~ uniform([0, 1]).

Given ¢, define t;, and tg such that € equals the probability of interval [tr,t*] and[t*,tr] (Figure 2). If
we have a training sample inside both [tz,¢*] and [t*,t5], then err(h, D) < e. Define Ey, be the event that a
training sample is inside [t1,t*]; Define Er be the event that a training sample is inside [t*,tg]. We would
like to set the sample size m such that P(ErL N ERr) > 1 —4.

To this end, again we take the complement and apply Union Bound,

P(Ef UER) < P(Ef)+ P(Eg) =2(1 —e)™ < 2e7 ™.
Note: The final result is using the fact that we are dealing with iid uniform samples and 1 — x < e™%.

Therefore, if the sample size m > %ln %, the above probability is at most §, which implies that P(Er N
ER) > 1— 4. This gives the following theorem.

Figure 2: € range around optimal solution.



Theorem 2. For the previous problem the consistency algorithm learns hypothesis class H with sample
complezity m(e,0) = L1n 2.

3 VC Theory

VC dimension defines a complexity measure that can be used even for hypothesis classes with infinite
cardinality.

Definition 3. For a hypothesis class H (such that X = {1,—1}) and sequence of examples S = (x1 ... x,),
we define the projection of H on S as

Iy (S) = {(h(z1) ... h(zn)) : h € H}
Definition 4. H shatters S if |TIy(S)| = 2™.
Definition 5. The VC dimenstion of H (VC(H)) is max{n € N : H, can shatters n points}.



