1 Hoeffding's Inequality and its supporting lemmas

Theorem 1 (Hoeffding's Inequality). Suppose that Z_{1}, \ldots, Z_{n} are iid such that for each $i, Z_{i} \in[a, b], \bar{Z}=$ $\frac{1}{n} \sum_{i=1}^{n} Z_{i}, \mu=\mathbb{E}\left[Z_{i}\right]$. Then for all $\epsilon>0$,

$$
\mathbb{P}(|\bar{Z}-\mu|>\epsilon) \leq 2 \exp \left(-\frac{2 n \epsilon^{2}}{(b-a)^{2}}\right)
$$

n The converse is almost true (up to a constant scaling of σ).

2 Proof of Lemma 3

Lemma 3: If X is σ^{2}-SG, then $\forall t>0$,

$$
\mathbb{P}(|X-\mu| \geq t) \leq 2 \exp \left(-\frac{t^{2}}{2 \sigma^{2}}\right)
$$

Proof.

$$
\begin{gathered}
X: \forall \lambda, \quad \mathbb{E}[\exp (\lambda(x-\mu))] \leq \exp \left(\frac{\sigma^{2} \lambda^{2}}{2}\right) \\
\mathbb{P}(|X-\mu| \geq t)=\mathbb{P}(X-\mu \leq-t)+\mathbb{P}(X-\mu \geq t)
\end{gathered}
$$

The above equality is true because they are mutually exclusive events.

$$
\begin{aligned}
\mathbb{P}(X-\mu \geq t) & =\mathbb{P}(\exp (\lambda(x-\mu)) \geq \exp (\lambda t)) \quad \forall \lambda>0 \\
& \leq \frac{\mathbb{E}[\exp (\lambda(X-\mu))]}{\exp (\lambda t)} \\
& \leq \exp (-\lambda t) \exp \left(\frac{\sigma^{2} \lambda^{2}}{2}\right) \quad \text { By Markov's inequality } \\
& =\exp \left(-\lambda t+\frac{\sigma^{2} \lambda^{2}}{2}\right)
\end{aligned}
$$

Now choose $\lambda>0$ to minimize the bound

$$
\begin{gathered}
\sigma^{2} \lambda-t=0 \Rightarrow \lambda=\frac{t}{\sigma^{2}} \\
\Rightarrow \exp \left(-\lambda t+\frac{\sigma^{2} \lambda^{2}}{2}\right)=\exp \left(-\frac{t^{2}}{2 \sigma^{2}}\right) \\
P(|X-\mu| \geq t) \leq 2 \exp \left(-\frac{t^{2}}{2 \sigma^{2}}\right)
\end{gathered}
$$

3 Proof of Lemma 2

Lemma 2: If X_{1}, \ldots, X_{n} are independent and for all i, X_{i} is σ_{i}^{2}-SG, then $\sum_{i=1}^{n} a_{i} X_{i}$ is $\sum_{i=1}^{n} a_{i}^{2} \sigma_{i}^{2}$-SG $\forall a_{1}, \ldots, a_{n}$.

1. Show $a X_{1}$ is $a^{2} \sigma_{i}^{2}$-SG. Let $\mathbb{E}\left[X_{1}\right]=\mu_{1}, \mathbb{E}\left[a X_{1}\right]=a \mu_{1}$.

$$
\begin{aligned}
\mathbb{E}\left[\exp \left(\lambda\left(a X_{1}-a \mu_{1}\right)\right)\right] & =\mathbb{E}\left[\exp \left(\lambda a\left(X_{i}-\mu_{i}\right)\right)\right] \\
& \leq \exp \left(\frac{(\lambda a)^{2} \sigma_{1}^{2}}{2}\right) \\
& =\exp \left(\frac{\lambda^{2}\left(a^{2} \sigma_{1}^{2}\right)}{2}\right)
\end{aligned}
$$

$\Rightarrow a X_{1}$ is $a^{2} \sigma_{1}^{2}-\mathrm{SG}$
2. Show that is X_{1}, X_{2} are independent, $X_{1}+X_{2}$ is $\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)$-SG. Let $\mathbb{E}\left[X_{1}\right]=\mu_{1}, \mathbb{E}\left[X_{2}\right]=\mu_{2}$

$$
\begin{aligned}
\mathbb{E}\left[\exp \left(\lambda\left(X_{1}+X_{2}-\mu_{1}-\mu_{2}\right)\right)\right] & =\mathbb{E}\left[\exp \left(\lambda\left(X_{1}-\mu_{1}\right)\right) \exp \left(\lambda\left(X_{2}-\mu_{2}\right)\right)\right] \\
& =\mathbb{E}\left[\exp \left(\lambda\left(X_{1}-\mu_{1}\right)\right)\right] \mathbb{E}\left[\exp \left(\lambda\left(X_{2}-\mu_{2}\right)\right)\right] \text { By Independence } \\
& \leq \exp \left(\frac{\lambda^{2} \sigma_{1}^{2}}{2}\right) \exp \left(\frac{\lambda^{2} \sigma_{2}^{2}}{2}\right) \\
& =\exp \left(\frac{\lambda^{2}\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)}{2}\right)
\end{aligned}
$$

So $X_{1}+X_{2}$ is $\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)$-SG
3. $\sum_{i=1}^{n} a_{i} X_{i}$ is $\sum_{i=1}^{n} a_{i}^{2} \sigma_{i}^{2}$-SG by 1 . and 2 .

4 Proof of Lemma 1

Lemma 1: If X takes valeus in $[a, b]$, then X is $\frac{(b-a)^{2}}{4}$-sub gaussian (SG)
We want to show:

$$
\mathbb{E}[\exp (\lambda(X-\mu))] \leq \exp \left(\frac{(b-a)^{2} \lambda^{2}}{8}\right)
$$

For X supported on $[a, b]$. Let $\psi(\lambda)=\ln (\mathbb{E}[\exp (\lambda(X-\mu))])$. It suffices to show that $\psi(\lambda) \leq \frac{(b-a)^{2} \lambda^{2}}{8}$. Note that $\psi(\lambda)$ is called the cumulant generating function of $X-\mu$. Let $0 \leq \xi \leq \lambda$ and begin by Taylor expanding ψ.

$$
\begin{gathered}
\psi(\lambda)=\psi(0)+\psi^{\prime}(0) \lambda+\frac{\psi^{\prime \prime}(\xi)}{2} \lambda^{2} \\
\psi(0)=0
\end{gathered}
$$

Let $Y=(X-\mu)$

$$
\psi^{\prime}(\lambda)=\frac{\mathbb{E}\left[\frac{\partial}{\partial \lambda} e^{\lambda Y}\right]}{\mathbb{E}\left[e^{\lambda Y}\right]}=\frac{\mathbb{E}\left[Y e^{\lambda Y}\right]}{\mathbb{E}\left[e^{\lambda Y}\right]}
$$

So $\psi^{\prime}(0)=\mathbb{E}[Y]=0$.

$$
\begin{aligned}
\psi^{\prime \prime}(\lambda) & =\frac{\mathbb{E}\left[Y^{2} e^{\lambda Y}\right]}{\mathbb{E}\left[e^{\lambda Y}\right]}-\left(\frac{\mathbb{E}\left[Y e^{\lambda Y}\right]}{\mathbb{E}\left[e^{\lambda Y}\right]}\right)^{2} \\
& =\mathbb{E}\left[Z^{2}\right]-(\mathbb{E}[Z])^{2} \\
& =\operatorname{Var}(Z) \\
& =\mathbb{E}[Z-\mathbb{E}[Z]]^{2} \\
& \leq \mathbb{E}\left[Z-\left(\frac{a+b}{2}-\mu\right)\right]^{2} \\
& \leq\left(\frac{a-b}{2}\right)^{2}=\frac{(b-a)^{2}}{4}
\end{aligned}
$$

For random variable Z with density:

$$
\mathbb{P}_{Z}(y)=\frac{\mathbb{P}_{Y}(y) e^{\lambda y}}{\int_{\mathbb{R}} \mathbb{P}_{Y}(y) e^{\lambda y} d y}
$$

5 Proof of Hoeffding's Inequality

Hoeffding's Inequality:Suppose that Z_{1}, \ldots, Z_{n} are iid such that for each $i, Z_{i} \in[a, b], \bar{Z}=\frac{1}{n} \sum_{i=1}^{n} Z_{i}, \mu=$ $\mathbb{E}\left[Z_{i}\right]$. Then for all $\epsilon>0$,

$$
\mathbb{P}(|\bar{Z}-\mu|>\epsilon) \leq 2 \exp \left(-\frac{2 n \epsilon^{2}}{(b-a)^{2}}\right)
$$

X_{i} is $\frac{(b-a)^{2}}{4}$-SG. Therefore, $\frac{1}{n} \sum_{i=1}^{n} X_{i}$ is $\sum_{i=1}^{n}\left(\frac{1}{n}\right)^{2} \frac{(b-a)^{2}}{4}=\frac{(b-a)^{2}}{4 n}$-SG. By Lemma 3, $\forall \epsilon$:

$$
\begin{aligned}
\mathbb{P}\left(\left|\frac{1}{n} \sum_{i=1}^{n} X_{i}-\mu\right| \geq \epsilon\right) & \leq 2 \exp \left(\frac{\epsilon^{2}}{2 \frac{(b-a)^{2}}{4 n}}\right) \\
& =2 \exp \left(-\frac{2 n \epsilon^{2}}{(b-a)^{2}}\right)
\end{aligned}
$$

6 Bernstein's Inequality

Theorem 2. Let X_{1}, \ldots, X_{n} be iid Random variables, and $\forall i,\left|X_{i}-\mathbb{E} X_{i}\right| \leq R$. Let $\sigma^{2}=\operatorname{Var}\left(X_{i}\right)$. Then $\forall \epsilon \geq 0$

$$
\mathbb{P}\left(\left|\frac{1}{n} \sum_{i=1}^{n} X_{i}-\mu\right| \geq \epsilon\right) \leq 2 \exp \left(-\frac{n \epsilon^{2}}{2 \sigma^{2}+\frac{2}{3} R \epsilon}\right)
$$

Note: in some cases, $\sigma^{2} \ll(b-a)^{2}$ which would imply $\frac{1}{\sigma^{2}} \gg \frac{1}{(b-a)^{2}}$. Let us set a small value of ϵ so that

$$
\begin{aligned}
& 2 \exp \left(-\frac{n \epsilon^{2}}{2 \sigma^{2}+\frac{2}{3} R \epsilon}\right) \leq \delta \\
& \Leftarrow n \epsilon^{2} \geq\left(2 \sigma^{2}+\frac{1}{3} R \epsilon\right) \ln \left(\frac{2}{\delta}\right) \\
& \Leftarrow n \epsilon^{2} \geq 4 \sigma^{2} \ln \left(\frac{2}{\delta}\right) \text { and } n \epsilon \geq \frac{2}{3} R \epsilon \ln \left(\frac{2}{\delta}\right) \\
& \Leftarrow \epsilon \geq \sqrt{\frac{4 \sigma^{2} \ln \frac{2}{\delta}}{n}} \text { and } \epsilon \geq \frac{4 R \ln \frac{2}{\delta}}{3 n}
\end{aligned}
$$

Choosing

$$
\begin{gathered}
\epsilon=\sqrt{\frac{4 \sigma^{2} \ln \frac{2}{\delta}}{n}}+\frac{4 R \ln \frac{2}{\delta}}{3 n} \\
\mathbb{P}\left(\left|\frac{1}{n} \sum_{i=1}^{n} X_{i}-\mu\right| \geq \epsilon\right) \leq \delta
\end{gathered}
$$

This implies the following corollary:
Corollary 3. Let X_{1}, \ldots, X_{n} be iid Random variables, and $\forall i,\left|X_{i}-\mathbb{E} X_{i}\right| \leq R$. Let $\sigma^{2}=\operatorname{Var}\left(X_{i}\right)$. Then with probability $1-\delta$:

$$
\left|\frac{1}{n} \sum_{i=1}^{n} X_{i}-\mu\right| \leq \sqrt{\frac{4 \sigma^{2} \ln \frac{2}{\delta}}{n}}+\frac{4 R \ln \frac{2}{\delta}}{3 n}
$$

7 Exercise

Let \mathcal{D} be a distribution over (X, Y) where $X \sim$ unif $([0,1])$ and

$$
Y \left\lvert\,(X=x)= \begin{cases}-1 & x \in[0,0.5] \\ +1 & x \in[0.5,1]\end{cases}\right.
$$

deterministically.
Algorithm: Memorization: Given \mathcal{S}, returns \hat{h} such that

$$
\hat{h}(x)= \begin{cases}y_{i} & x=x_{i} \text { for some } i \\ +1 & \text { otherwise }\end{cases}
$$

1. $\operatorname{err}(\hat{h}, \mathcal{S})=0$
2. $\operatorname{err}(\hat{h}, D)=\frac{1}{2}$
3. Is it correct that with probability $1-\delta$,

$$
|\operatorname{err}(\hat{h}, \mathcal{S})-\operatorname{err}(\hat{h}, \mathcal{D})| \leq \sqrt{\frac{\ln \frac{1}{\delta}}{2 m}} ?
$$

No. Hoeffding's does not apply because we have:

$$
\operatorname{err}(\hat{h}, \mathcal{S})=\frac{1}{m} \sum_{i=1}^{m} I\left(\hat{h}\left(x_{i}\right) \neq y_{i}\right)
$$

but $I\left(\hat{h}\left(x_{i}\right) \neq y_{i}\right) \nsim \operatorname{Bernoulli}(\operatorname{err}(\hat{h}, \mathcal{D}))$.
Chicheng notes: Here \hat{h} is selected after seeing the $\left(x_{i}, y_{i}\right)$'s, which can also make $I\left(\hat{h}\left(x_{i}\right) \neq y_{i}\right)$'s dependent. Note that if instead \hat{h} is chosen before seeing the (x_{i}, y_{i})'s (which makes \hat{h} independent of the $\left(x_{i}, y_{i}\right)$'s), then conditioned on $\hat{h}, \sum_{i=1}^{m} I\left(\hat{h}\left(x_{i}\right) \neq y_{i}\right)$ does come from $\operatorname{Binomial}(m, \operatorname{err}(\hat{h}, D))$.

