
CSC 588: Homework 2

Chicheng Zhang

March 22, 2021

• This homework is due on ����Mar 23 Mar 25 on gradescope.

• This homework is intentionally made short (and due on a late date) to give you more time to think
about your project, which is due on Mar 16.

• If you feel unable to make progress on any of the questions, feel free to post your questions on Piazza.

• You are encouraged to discuss the homework questions with your classmates, but the discussions should
only be at a high level, and you should write your solutions in your own words. For every question you
have had discussions on, please mention explicitly whom you have discussed with; otherwise it may be
counted as academic integrity violation.

• Feel free to use existing theorems from the course notes / the textbook.

Problem 1

In this exercise, we conduct experiments on AdaBoost using a simple benchmark dataset diabetes in
openml.org. You may use any programming languages you like. Please submit your source code by emailing
to chichengz@cs.arizona.edu. Some preparations:

1. Go to https://www.openml.org/d/37 and download the dataset.

2. The last column of the dataset gives the classes of the examples - use +1 to denote class ’tested positive’
and −1 to denote class ’tested negative’.

3. Choose a random subset of size 100 as the training set, and use the remaining 668 examples as the test
set.

Answer the following questions:

1. Define base hypothesis class B =
{
σ · (2I(xi ≤ t)− 1) : σ ∈ {±1} , i ∈ {1, . . . , d} , t ∈ R

}
as the set of

bi-directional decision stumps. Let the weak learner A be: given a weighted dataset, return the
classifier h ∈ B that has the smallest weighted error. Implement AdaBoost with A, and run it for 3000
iterations. At time t, suppose the following cumulative voting classifier

Ht(x) = sign(ft(x)), ft(x) =

t∑
s=1

αshs(x)

is produced. Plot AdaBoost’s learning curves: the training error of Ht, the test error of Ht, and the
training exponential loss of ft, as functions of iteration t. What do you see?
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2. Given voting classifier ft, define its normalization as

f̄t(x) =
ft(x)∑t
s=1 αs

=

∑t
s=1 αshs(x)∑t

s=1 αs

Now, given an example (x, y), define its normalized margin at time step t as���yft(x) yf̄t(x). At iterations
3, 10, 30, 100, 300, 1000, 3000, plot histograms of normalized margins of training examples. Do you
see any trend as t increases?

Problem 2

Show that for AdaBoost, at iteration t, the updated distribution Dt+1 satisfies that

m∑
i=1

Dt+1(i)I(ht(xi) 6= yi) =
1

2
.

Intuitively, why is this formula reasonable?

Problem 3

Most of the problems we have seen in class so far are about classification. Consider instead a regression
problem, where we have a distribution over X × Y, where the feature space X =

{
x ∈ Rd : ‖x‖∞ ≤ R

}
and

the label space Y = [−Y, Y ]. Consider the hypothesis class H =
{
hw(x) := 〈w, x〉 : ‖w‖1 ≤ B

}
, and define

the loss function to be the square loss `sq(ŷ, y) = (ŷ − y)2. For any predictor h : Rd → R, define LD(h) =
E(x,y)∼D`sq(h(x), y) its generalization loss. Now, given a set of examples S = ((x1, y1), . . . , (xm, ym)) drawn

iid from D, define the ERM ĥ = arg minh∈H ES`sq(h(x), y). For any δ > 0, can you show a tight upper
bound on

LD(ĥ)− min
h′∈H

LD(h′)

that holds with probability 1 − δ? (You might want to use the contraction inequality of Rademacher
complexity to solve this problem.)

Problem 4

Consider a set of examples S = (x1, . . . , xm) ⊂ Rd, where for each i, ���‖xi‖ ‖xi‖∞ ≤ X∞. Define the class of
`1-regularized n-layer ReLU network as

Fn��Fm =
{
hW1,...,Wn

: ∀i,Wi ∈ RNi×Ni−1

+ ,∀j, ‖W j
i ‖1�≤ = Bi

}
,

where N0, . . . , Nn are fixed numbers such that N0 = d, Nn = 1, W j
i denotes the j-th row of Wi, and

hW1,...,Wn
(x) = σ(Wnσ(Wn−1 · · ·σ(W2σ(W1x))));

here σ(z) = max(z, 0) is the ReLU activation function, and when v = (v1, . . . , vl) is a vector, we denote
by σ(v) = (max(v1, 0), . . . ,max(vl, 0)) the result of element-wise application of σ on v. Can you use the
contraction inequality of Rademacher complexity to give a tight bound on RadS(Fn)? How would your
bound change if σ is instead the sigmoid activation function σ(z) = 1

1+e−z ? (Perhaps start with something
easier, say n��m = 1 or 2, then try to generalize.)

Problem 5

How much time did it take you to complete this homework?
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