
CSC 588: Homework 1

Chicheng Zhang

February 8, 2021

• This homework is due on Feb 18 on gradescope.

• You are encouraged to discuss the homework questions with your classmates, but the discussions should
only be at a high level, and you should write your solutions in your own words. For every question you
have had discussions on, please mention explicitly whom you have discussed with; otherwise it may be
counted as academic integrity violation.

• Feel free to use existing theorems from the course notes / the textbook.

Problem 1

1. Show that in Rd, we can find at most d vectors that are pairwise orthogonal.

2. Next we will use Hoeffding’s inequality to show that, in sharp contrast to above, it is possible to find
exponentially many (n = eΩ(d)) vectors that are almost orthgonal; that is, there exist x1, . . . , xn in Rd,
such that for every pair (i, j) (1 ≤ i < j ≤ n), the angle between xi and xj is between 89◦ and 91◦.
To this end, consider the following randomized construction:

Draw n random vectors X1, X2, . . . , Xn in Rd, where for each i, Xi = 1√
d
(Zi,1, . . . , Zi,d).

Here
{
Zi,j

}
i∈{1,...,n},j∈{1,...,d}’s are iid, and Zi,j takes value 1 with probability 1/2, and takes

value −1 with probabilty 1/2.

(a) Check that all Xi’s have unit length, i.e. ‖Xi‖2 = 1.

(b) Use Hoeffding’s Inequality to show that for any fixed pair i, j ∈ {1, . . . , n}, i < j,

P(|
〈
Xi, Xj

〉
| ≥ sin(1◦)) ≤ 2 exp{−0.00014d}.

(c) Suppose n = exp{0.00005d}. Use the union bound to show that

P
(
∀i < j, the angle between Xi and Xj is in [89◦, 91◦]

)
> 0.

(Note that this proves the claim at the beginning of item 2.)

Problem 2

Suppose we have an algorithm B that learns hypothesis class H in the following sense. There exists a function
f : (0, 1) → N, such that for any distribution D realizable by H, for any ε > 0, if B draws m ≥ f(ε) iid
training examples from D, then with probability at least 1

2 , B returns a classifier whose generalization error
on D is at most ε.

Now, given B, and the ability to draw fresh training examples, how can you design an algorithm A that
(ε, δ)-PAC learns H for any ε and δ? What is A’s sample complexity?
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Problem 3

1. Show that the class of non-homogenenous linear classifiers

H =
{
hw,b(x) = 2I(〈w, x〉+ b > 0)− 1 : w ∈ Rd, b ∈ R

}
has VC dimension d+ 1.

2. Define the class of polynomial threshold functions

Hn =
{

2I(p(x) > 0)− 1 : p is a polynomial of x of degree ≤ n
}

(where x ∈ R). What is the VC dimension of H?

3. Suppose we have a natural number ���v ≥ 1 v ≥ 2, and l hypothesis classes H1,H2, . . . ,Hl, where for
every i, VC(Hi) ≤ v. Define H , ∪li=1Hi. Show that there exists some constant c > 0 such that

VC(H) ≤ c ·
(
v ln(v) + ln(l)

)
.

Problem 4

In this exercise, we will unify the analysis of the empirical risk minimization algorithm in realizable and
agnostic settings to recover the O( 1

ε )-type sample complexity and the O( 1
ε2 )-style sample complexity given

in the class, using Bernstein’s Inequality. Suppose H is a finite hypothesis class, D is a distribution over
labeled examples, and S is a training set of size m drawn iid from D. Denote by ν? = minh∈H err(h,D) as

the optimal generalization error, and ĥ the output of the empirical risk minimzation algorithm.

1. Using the Bernstein’s Inequality we have seen in the class, show that with probability 1 − δ, for all
classifiers h in H,

err(h, S) ≤ err(h,D) +

√
err(h,D)

4 ln 2|H|
δ

m
+

2 ln 2|H|
δ

m
,

err(h,D) ≤ err(h, S) +

√
err(h, S)

4 ln 2|H|
δ

m
+
�

�
�
�

6 ln 2|H|
δ

m

12 ln 2|H|
δ

m
.

(Hint: to get the second inequality, you can use the elementary fact that for A,B,C > 0, A ≤ B+C
√
A

implies A ≤ B+C2 +C
√
B. To avoid carrying around the cumbersome

ln
2|H|

δ

m term, I suggest denoting
it by another symbol, e.g. α, in your calculation)

2. Show that with probability 1− δ, ĥ satisfies that

err(ĥ, D) ≤ ν? + c1

√
ln 2|H|

δ

m
ν? + c2

ln 2|H|
δ

m
,

for some positive constants c1 and c2. (Hint: you may find the following elementary facts useful: for
A,B > 0,

√
AB ≤ A+B,

√
A+B ≤

√
A+
√
B. The tightness of constants c1 and c2 won’t be graded.)

3. Use the above item to conclude that:

(a) There exists a function mA such that mA(ε, δ) = O(
ln |H|+ln 1

δ

ε2 ), when m ≥ mA(ε, δ), for all

distributions D, err(ĥ, D) ≤ ν? + ε with probability 1− δ.

(b) There exists a function mR such that mR(ε, δ) = O(
ln |H|+ln 1

δ

ε ), when m ≥ mR(ε, δ), for all

distributions D such that ν? = 0, err(ĥ, D) ≤ ε with probability 1− δ.
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Problem 5

How much time did it take you to complete this homework?
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