
CSC 580 Homework 2

Due: 10/15 (Saturday) 5:00pm

Instructions:

• (NEW): If you use math symbols, please define it clearly before you use it (unless they are
standard from the lecture).

• (NEW): You must provide the full source code for whatever problem you use programming.
Please email them to csc580homeworks@gmail.com.

• Every single subproblem will be worth 10 points.
• Submit your homework on time to gradescope. NO LATE DAYS, NO LATE SUBMISSIONS

ACCEPTED.
• The submission must be one single PDF file (use Acrobat Pro from the UA software library if

you need to merge multiple PDFs).
• Copy and paste the code into the pdf submission (you can use Microsoft Word and use

fixed-width fonts).
– You can use word processing software like Microsoft Word or LaTeX.
– You can also hand-write your answers and then scan it. If you use your phone camera, I

recommend using TurboScan (smartphone app) or similar ones to avoid looking slanted
or showing the background.

– Watch the video and follow the instruction: https://youtu.be/KMPoby5g_nE .
• Collaboration policy: do not discuss answers with your classmates. You can discuss HW for

the clarification or any math/programming issues at a high-level. If you do get help from
someone, please write it down in the answer.

• Please use the problem & subproblem numbering of this document; do not recreate or
renumber them.
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Problem 1. Math

(a) Prove that

(1) the max uncertainty F1(p) = 1 −maxk
i=1 pi,

(2) the Gini index-based uncertainty F2(p) = 1 −∑k
i=1 p2

i ,
(3) and the entropy uncertainty F3(p) = ∑k

i=1 pi log(1/pi),

are all concave functions. Clearly describe which properties of convexity/concavity you are using.

(b) Consider the standard regression setting with the squared loss. Let us assume that the conditional
distribution Y ∣X = x follows the Gaussian distribution with variance σ2 at some mean that is a
function of x. You can use any symbol you like to denote this function in your solution, such as f or
g. Describe the regression function (i.e., the Bayes optimal function) in this case (the answer will
not involve min or arg min but rather an expectation). Compute the Bayes risk of the regression
function. Note: just writing the definitions will result in 0 point. Hint: the Bayes risk will involve
σ2 in some ways.

Problem 2. Linear Regression

The Wisconsin State Climatology Office keeps a record on the number of days Lake Mendota
was covered by ice at http://www.aos.wisc.edu/˜sco/lakes/Mendota-ice.html. Same
for Lake Monona: http://www.aos.wisc.edu/˜sco/lakes/Monona-ice.html. As with any
real problems, the data is not as clean or as organized as one would like for machine learning. Curate
two clean data sets for each lake, respectively, starting from 1855-56 and ending in 2018-19. Let x
be the year: for 1855-56, x = 1855; for 2017-18, x = 2017; and so on. Let y be the ice days in that
year: for Mendota and 1855-56, y = 118; for 2017-18, y = 94; and so on. Some years have multiple
freeze thaw cycles such as 2001-02, that one should be x = 2001, y = 21.

(a) Plot year vs. ice days for the two lakes as two curves in the same plot. Produce another plot
for year vs. yMonona − yMendota.

(b) Split the datasets: x ≤ 1970 as training, and x > 1970 as test. (Comment: due to the temporal
nature this is NOT an iid split. But we will work with it.) On the training set, compute the
sample mean ȳ = 1

n ∑
n
i=1 yi and the sample standard deviation

√
1

n−1 ∑
n
i=1(yi − ȳ)2 for the two

lakes, respectively.
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(c) Using training sets, train a linear regression model

ŷMendota = β0 + β1x + β2yMonona

to predict yMendota. Note: we are treating yMonona as an observed feature. In other words, each
example is represented by feature z = (1, x, yMonona) and label yMendota, and the regression
model is:

ŷMendota = ⟨β, z⟩
for β = (β0, β1, β2)⊺. Do this by finding the closed-form ordinary least squares (OLS)
solution for β = (β0, β1, β2)⊺ (no regularization):

min
β

1
n

n

∑
i=1
(z⊺i β − yi)2.

Give the OLS formula in matrix form (define your matrices), then give the OLS value of
β0, β1, β2.

(d) Using the MLE above, give the mean squared error on the test set; i.e., 1
m ∑

m
i=1(z⊺i β − yi)2

where {(zi, yi)}m
i=1 is the test set. (You will need to use the Monona test data as observed

features.)

(e) “Reset” to (c), but this time use gradient descent to learn the β’s. Recall our objective function
is the mean squared error on the training set:

F (β) ∶= 1
n

n

∑
i=1
(z⊺i β − yi)2.

Derive the gradient of F with respect to β.

(f) Implement gradient descent. Initialize β0 = β1 = β2 = 0. Use a fixed stepsize parameter
η = 0.1 and print the first 10 iteration’s objective function value. Use the stopping criterion
learned in the class with tolerance 10−4; report the final β and its training objective function
value. Compare the β’s to the closed-form OLS solution. Try smaller η values and tell us
what happens.
Hint: Update β0, β1, β2 simultaneously in an iteration. Don’t use a new β0 to calculate β1,
and so on.

(g) As preprocessing, normalize your year and Monona features (but not yMendota). Here,
normalization means the standardization where you transform the features so that they are
mean 0 and variance 1. Then repeat (f).

3



CSC 580

(h) “Reset” to (c) (no normalization, use closed-form solution), but train a linear regression model
without using Monona:

ŷMendota = γ0 + γ1x.

i. Interpret the sign of γ1.
ii. Some analysts claim that because the closed-form solution β1 in (c) is positive, fixing all

other factors, as the years go by the number of Mendota ice days will increase, namely
the model in (c) indicates a cooling trend. Discuss this viewpoint, relate it to question
(h) i.
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Problem 3. Ridge regression.

(a) Derive the closed-form solution in matrix form for the ridge regression problem:

min
β
( 1

n

n

∑
i=1
(z⊺i β − yi)2) + λ∥β∥2A

where β = (β0, β1, β2)⊺,
∥β∥2A ∶= β⊺Aβ

and

A =
⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
.

This A matrix has the effect of NOT regularizing the bias β0, which is standard practice in
ridge regression. Note: Derive the closed-form solution with step by step explanations, do not
blindly copy lecture notes. Writing your solutions in terms of zi’s would be fine. If you like,
you can also represent each zi as zi = (1, xi) in this problem where each xi ∈ R2, and write
your solutions in terms of the xi’s.)

(b) Let λ = 1 and tell us the value of β from your ridge regression model when you use the data
from Problem 2(c).

Problem 4. Paired t-test

You lead a team in a startup company that provides a search engine for digital document search in
libraries. You have come up with a new ranking algorithm B for the search results. You believe that
B improves upon the existing algorithm A. You now want to test if the users actually like the result
from B in a statistically meaningful way. You have crowdsourced 12 evaluators, showed them the
search results from A and B side by side, and asked them to provide rating scores from 1 to 5. Here
is the data:
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A B
1 1
2 4
1 3
2 1
4 5
3 5
2 4
3 4
4 2
1 3
2 4
1 2

(a) For each algorithm, construct a 95% confidence interval for the mean rating under the assumption
that each trial follows an i.i.d. Gaussian distribution. Here, one trial is one rating from an evaluator.
Use python code and report both the code and the result. Please state whether the two confidence
intervals overlap or not. Based on your answer, can you claim that one algorithm is better than the
other in a statistically meaningful way?

(b) You are asked to test the null hypothesis that the two algorithms have no difference in user ratings.
Perform the two-sided paired t-test and tell us if you were able to reject the null hypothesis with the
significance level α = 0.05 (i.e., with 95% confidence). Based on the result, discuss the potential
benefit of using the paired t-test as opposed to constructing individual confidence intervals as in (a).

Problem 5. SVM and kernels.

(a) Derive the dual problem of the homogeneous soft-margin SVM:

min
w

1
2∥w∥

2
2 +C

n

∑
i=1

ξi

such that yiw
⊺xi ≥ 1 − ξi,∀i

ξi ≥ 0,∀i

Important: Please provide step-by-step justifications in your own words.
Example i is said to be a support vector if the representation of the optimal w∗ has a nonzero
coefficient in yixi; use the KKT condition to show that, any support vector i must have
unnormalized margin yi(w⋆)⊺xi ≤ 1.
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(b) For each of the functions K below, state if it is a valid kernel function or not. If it is a kernel,
write down its feature map; if not, prove that it is not one.

(1) x = (x1, x2) and z = (z1, z2) are real vectors; let K(x, z) = x1 ⋅ z2.
(2) x = (x1, . . . , xd) and z = (z1, . . . , zd) are vectors whose entries are integers between 0

and 100; let K(x, z) = ∑d
i=1 min(xi, zd).

(3) x = (x1, . . . , xd) and z = (z1, . . . , zd) are real vectors; let K(x, z) = (1+x1z1) ⋅ . . . ⋅ (1+
xdzd).

Problem 6 (1pt). What do you plan to do for your final project?
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