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Learning theory

* An attempt to understand machine learning at a fundamental level, with minimal assumptions

e Why?
* Provides mathematical explanation on how many samples are needed to achieve the target
error rate (e.g., 5% error rate).

* Provides the fundamental limits of any ML algorithms (e.g., statements like “without 100
samples, you are not guaranteed to have < 5% error rate”).

* What characterizes the difficulty of a particular ML problem? (e.g., for kernel regression, the

slope of the learning curve depends on the ‘effective dimension’)

ervor Yate
difference

£rom +he. T Q. how fast does it decay- ¢
an.fs evror @

m (% of rain camples)

(* examples above is just to give you a sense; rigorous statements are more involved.)
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Hypothesis class H (= function class = concept class): each h is a mapping: X - Y
* H is usually of infinite cardinality. E.g., linear classifiers.
* |n this lecture, we mostly handle the case of || < 0. E.g., discretized linear classifiers.

err(h): the generalization error.

érr(h): the training error.

({, automatically implies that there is no label noise)
The realizable case: there exists h* € H such that err(h*) = 0

The agnostic case: realizability may or may not be true

https://towardsdatascience.com/supervised-learning-basics-of-classification-and-main-algorithms-c16b06806cd3



Probably Approximately Correct (PAC) framework

Suppose an ML algorithm A returns heH using a training set S~ D™

Goal: We'd like to say something like “if you have m samples, the error rate of h will be at most
1/m” and like this to be true at any case.
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Probably Approximately Correct (PAC) framework.

Suppose an ML algorithm A returns heH using a train set S~ D™

Goal: We'd like to say something like “if you have m samples, the error rate of h will be at most
1/m” and like this to be true at any case.

Turns out, this is hard to say this “at any case”. Why?

Amended goal: We’d like to say something like
“if you have m samples, the error rate of A will be at most 1/m, with probability at least .95”.

approximately correct probably

This kind of guarantee is called: Probably approximately correct (PAC) guarantee.




PAC framework

[Def] Let H be a hypothesis space. Let A be an algorithm that outputs ﬁm.
We say that A ‘PAC-learns H’ with sample complexity function m(¢, 6)

< For any distribution D realizable with respect to hypothesis space H, € > 0, 6 > 0, we have that
m=m(e,6) = P(err(flm) < E) >1—-0 €: target error rate
O target failure rate

In |7-[|+ln(%)

€

[Thm] If || < oo, then there exists an algorithm A that PAC-learns H with m(eg,6) =

In |7—[|+1n(§)

m

» This means: if we fix m, then w.p. 21 — §, err(h,,) <

sample complexity and the error
bound are reciprocal: if you have
one, you can derive the other.

* Tip: Don’t focus too much on In (%); if 6 = 0.05 then In (%) ~ 3



Proof of the theorem

In |17-[|+1n(%)

€

[Thm] If || < oo, then there exists an algorithm A that PAC-learns H with m(¢,6) =

(The proof) By construction: Let A be the ERM:

heH

m

~ 1

h,, = argmin |eérT(h) = EZ 1{h(x;) # y;} (break ties arbitrarily)
i=1

* Observe: D is realizable => érr(h*) = 0 (no noise in training data) => e”\rr(flm) =0

* Define: H, = {h € H: err(h) = €}

* Intuition: we will show that our training examples can “invalidate”

all classifiers in H,, with high probability



Proof of the theorem

e Define event
E ={Vvh e H.:érr(h) > 0}

(in words, all high-error classifiers are invalidated by the training data)

* Note: E happens => h,, & H, => err(flm) <e€

* Thus, it suffices to show P(E) > 1 — §. Why is this true?
P(E€) = P(3h € H.: etr(h) = 0)

< Xnew, P(err(h) = 0) (union bound)
= Ynex, [li=1 P(h(x;) =y;) (independence of examples)

= Zheﬂe(l - err(h))m (definition of err(h))
<|H|A-e)™ (err(h) = €, [He| < |H])

<|Hl|leTme < § (1+x<e*,m=m(ed)):=



3. French Bulldog and Boston Terrier

Application 1 example:

e Learning conjunctions of Boolean literals.
 eachinstance x = (x(1), ..., x(d)) has d Boolean features
» Example hypothesis: x(1) A x(2) A =x(4) _
* Recall realizability: the label is determined by some h* € H . Eo—u— e

o || = 3% (each variable can be either present with no negation, present with negation, or not
present)

* Q: How many training examples suffice to ensure that with probability = 0.99, the ERM will return a
hypothesis with error < 0.057

cAim = é (ln(3d) +In (ﬁ))

e Ifd=10, then m = 312
e |f d=100, then m = 2290



Application 2

Learning neural networks with a fixed architecture

H = {L —layer MLPs with floating-point weight

with n; nodes at layer [}

#parameters of h € H':s

Yl M My x = z(0) € R™

(2) eER
aD e ptt

Every neural net can be represented by

32)F_, n;_q ny bits
=>log |H| < 32%i.,m_qmy

* Training sample size m = Q(Zlel n;_1 nl) ensures that ERM returns a low-error model
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The Agnostic PAC framework

* Realizable setting: we have assumed that there exists a hypothesis with zero error (denoted by h™) is
in the hypothesis class H.
* Certainly, not realistic.

* Agnostic setting

* h* = arg glnl}[l err(h) does not necessarily has zero error.
€

* true or false: “this means that the Bayes error is not zero”?

[Def] Let A be an algorithm that takes in m samples and outputs a classifier ﬁm from a hypothesis
class H. Then, we say A ‘agnostically PAC-learns hypothesis class H’ with sample complexity

function m(e, 6).
& For any distribution D and values € > 0, and 6 > 0, we have that

m=>m(e,§) = P (err(hm) — gg}r} err(h) < e) >1—-6
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Background: Hoeffding’s bound

(Thm) Let X4, ..., X;,, be i.i.d. random variables from a distribution D that is supported on [0,1] with mean u.

Then,

P H—— Xi

< e) ~ | _ pg2me

* equivalently, P (‘u —% moXi

* Exercise: Compute a confidence bound on u that holds with probability at least 1 — 6.

* Application: let h be a hypothesis. Set X; := 1{h(x;) # y;}

* Then, j = err(h) and -3, X; = eFr(h).
+ P(lerr(h) — efr(h) | <€) = 1 — 2e72me’

* In other words, w.p. 1 — 6, |err(h) — err(h) | <

In2/6
2m

Probability

0.2

©
—

Empirical Error distribution

frue error

| | } |
0.2 0.4 0.6 0.8 1
Empirical Error Rate
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Applications of Hoeffding’s bound

Does Hoeffding’s bound imply that for any trained classifier ﬁm, w.p.1 -6,

err(Ry,) — et(Ry,) < lerr(Ry) — efr(hy) | < /m;f ?

 Example: learning a threshold in [0,1] interval
e &tr(hy) = 0

« err(hy) = 1/2 V. =\

Hoeffding’s bound does not apply to h,,,! =<
* Key reason: ﬁm is not chosen before seeing the training examples, violating the assumption

How to analyze the performance of ﬁm?
« A common approach: assume that h,,, € 7, and bound |err(h) — érr(h) | forallh € I

What if flm is a classifier that memorizes data? (e.g. it outputs default label + for unseen examples)

)((\-WW‘E‘W*

()
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Assigned reading quiz last time

Andrej Karpathy, “Deep Reinforcement learning: Pong from Pixels”

What reinforcement learning (RL) method does the author use to train a game-playing agent?
What is its main idea?

score function f

p(X) after a parameter update

e Policy gradient method

=1 1

What are some differences between human and this RL agent in solving the game
 Human can start playing reasonably without receiving rewards
 Human incorporate prior knowledge, e.g. intuitive physics

What is the “credit assignment problem”? Why is this a challenge in RL?

PY upP >.DOWN>‘ UP r® uP >‘DOWN>. DOWN»,DOWN». uP »® WIN
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Uniform convergence via Hoeffding’s inequality

Thm (uniform convergence): If |H'| < oo, then with training sample size

8(1n|}f|+1n(§))

€2

m=>m(e 6) = , we have that w.p. 21 — §, the following happens:

for all h € H, |err(h) — éerr(h)| < €/2

« Why do we care about this? This guarantees that the ERM classifier h,, := arg ;lrélj{[l érr(h) has good

generalization error (see next slide), establishing agnostic PAC learnability

envv Q,(rvdd,O) aligpkton envv Qz“‘(dd‘o)
- A %u-walmﬁm exrved f\ ~F /anl
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Uniform convergence => agnostic PAC learning

h* = argminerr(h)

Lemma: If it holds that hert A omauslinptros & le,¥)
_ s (§2 DGl e e WH5)
for all h € 7, |err(h) — err(h)| < €/2, _ SR L
& . - Sy ) -

then h,, := arg min err(h) satisfies that err(h,,) — err(h*) < e. — T e wp R

Proof: err(flm) < e/\rr(ﬁm) +€/2 (Assumption w/ h = h,,)
< érr(h*) +€/2 (Optimality of ERM)
< (err(h*) +€/2) +€/2 (Assumption w/ h = h")
=err(h*) + ¢

Thm (sample complexity of agnostic PAC learning): If |{| < oo, then ERM agnostic PAC-learns H
2
8(In|#¢|+In(3))

€2

Proof sketch: m = m(e, §) = Uniform convergence = ERM has excess error with high prob.

with m(eg,6) =
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Establishing uniform convergence

* Thm (uniform convergence): If |H'| < oo, then with training sample size

8(In|7¢|+In(3)) _
m=>m(e 6) = = , we have that w.p. 21 — §, the following happens:

forallh € H, |err(h) — err(h)| < €/2

Proof: define E = {Vh € H: |err(h) — érr(h)| < €/2}; sufficestoshow P(E) > 1 -6
P(EC) = P(3h € H:|err(h) — éerr(h)| > €/2)
< Ynex P(lerr(h) — érr(h)| > €/2) (union bound)

mEZ

< Dhey 2€ 2
2

(Hoeffding)

me

= 2|H|e 2
<6 (m = m(e, 6))

(algebra)
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Discussion

All these results are ‘worst-case’ bounds!

In |7—[|+ln(§)

€

[Thm] If || < oo, then there exists an algorithm A that PAC-learns H with m(¢,6) =

[Thm] If || < oo, then there exists an algorithm A that agnostically PAC-learns H with

2
m(e.8) = 8(1n|}[€|:1n(5)), l.e., m = m(e,6) = P (err(ﬁm) — grél:{[l err(h) < e) >1-90

Remember: performance on individual D can be much better.




A learning-theoretic view of model selection

* Problem (model selection): given a nested collection of hypotheses classes H; € - € H and a
training sample S, how to learn a classifier from Ufé=1 H;, that has low generalization error?

* Challenge:
e Can do ERM with H, alone, but what k to choose?

* Smaller k => min err(h) is large => underfitting
heH

* Larger k => H,, too complex => overfitting

e Suggestion from Learning theory: choose h EUI,§=1 H;. with the smallest upper bound of
generalization error

~ ~ 1 Hril/d
(h k) = argmiNye(y, k) her, (err(h) \/nKl kl/ )
|

Upper bounds err(h) w.p.1—46
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A learning-theoretic view of model selection

e Suggestion from Learning theory: choose h EUI,§=1 H;. with the
smallest upper bound of generalization error

¢ Risks
~ A _ - In K|Hy|/6 \\
(h, k) = argMNge(q .. K}, heH} err(h) + om .
N g
“« ’ ” . . Besonihnd . Empirical
Occam’s Razor” — simpler explanations are preferred cgularizer -
* Bound minimization — a sometimes useful heuristic

L ] ] ) VC-dimension 4 ]
* Intuition: choosing model conservatively; complexity P e
regularization ——
] o ) o Space of nested hypotheses with decreasing /
* Also known as the Structural Risk Minimization (SRM) principle
Figure 7: Structure Risk Minimization for Model Selection

* Thm: the SRM output h has generalization error bounds
competitive with ERM with H},, for all k simultaneously.
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What if the hypothesis space is not finite?

* This is highly nontrivial, given techniques we learned so far.

* Turns out, even if |H| = oo, there is an ‘effective capacity’ that replaces log | H|.
* The ‘right’ notion of capacity: Vapnik-Chervonenkis (VC) Dimension :
* PAC sample complexity results carry over with log |H | replaced with VC(H') &g

* E.g., for d-dimensional linear classifiers H, VC(H) = 0(d)

- (d+ln(%)

* |ts realizable (resp. agnostic) PAC sample complexity = O
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Efforts to push learning theory to practice

* Dziugaite & Roy, Computing Nonvacuous Generalization Bounds for Deep (Stochastic) Neural
Networks with Many More Parameters than Training Data, 2017

Experiment T-600 T-1200 T-300* T-600° T-12002 T-600° R-600
Train error 0.001 0.002  0.000 0.000 0.000 0.000  0.007

| Test error 0.018 0.018 0.015 _ 0.016 0.015 0.013 0.508 |
SNN trainerror ~ 0.028  0.027  0.027  0.028 0.029 0.027 0.112
SNN test error 0.034 0.035 0.034  0.033 0.035 0.032  0.503

IPAC-Bayes bound 0.161 0.179 0.170  0.186 0.223 0.201 1.352 |
KL divergence 5144 5977 5791 6534 8558 7861 201131
# parameters 471k 943k 326k 832k 2384k 1193k 472k
VC dimension 26m 56m 26m 66m 187m 121m 26m

Table 1: Results for experiments on binary class variant of MNIST. SGD is either trained on (T) true labels or
(R) random labels. The network architecture is expressed as N, indicating L hidden layers with N nodes each.
Errors are classification error. The reported VC dimension is the best known upper bound (in millions) for ReLLU
networks. The SNN error rates are tight upper bounds (see text for details). The PAC-Bayes bounds upper bound

the test error with probability 0.965.
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Bound minimization as learning algorithms?

* There is a school of researchers who believes learning theory can be made practical — it could
actually provide a useful upper bound on the test error (without looking at the test set)

* Some other researchers disagree.

0.095; ——
-8-generalization error
009} Yeow bound (diff. scale)|]

e At least, they often characterize the ‘core quantity’ that matters in
reducing test error.

e e.g., some complicated form of ‘norm’ of the weights in the 0.085

neural networks is claimed to control the generalization error.

eIrror

0.08;

* This can be used to build a practical algorithm — directly use such
a norm as a regularizer 0'0751’2 200 280

epoch

http://proceedings.mlr.press/v80/aroral8b/aroral8b.pdf, “Stronger Generalization Bounds for Deep Nets via a Compression Approach ” 23



http://proceedings.mlr.press/v80/arora18b/arora18b.pdf

Summary

Learning theory: the PAC & agnostic PAC learning framework

Analysis of Empirical Risk Minimization (ERM)

Capacity measure of hypothesis classes: VC(H), log|H |

Structural Risk Minimization (SRM) for model selection

Using learning theory to guide practice

24



Final review



General information

* See Piazza @91 about final and project information, if you haven’t already!

* Final exam time and venue: Tuesday, Dec 13, 3:30-5:30pm, GS 701
* You can bring a “cheatsheet” of US letter paper size (two sided) with you
* The focus will be on Lec 9 onwards (although Lecs 1-8’s material may also appear)

e General suggestions:
* The exam will focus on checking your understanding of basics concepts and ideas, and
calculation is likely to be light
* Review homeworks & midterm solns to make sure you have a solid grasp on the basics

26



Lec 9: unsupervised learning

e Clustering
* The k-means objective function (total quantization error)
* Lloyd’s algorithm
e Other clustering algorithm (basic understanding)

* PCA
* Two perspectives: variance maximization and reconstruction error minimization
* Projection to get low-dimensional representation; reconstruction (HW3, Problem 4)
» Able to hand-calculate eigenvalues / eigenvectors of small real-symmetric matrices (e.g. 2x2)

27



Lec 10: probabilistic ML |: Naive Bayes

General recipe for probabilistic ML

» Specify generative story; estimate the model (MLE); make decisions based on the estimated
model

Generative vs. Discriminative approaches for ML

MLE for probabilistic models with fully-observed data
* First, try to write down the data log-likelihood

The Naive Bayes model — discrete features, conditional Gaussian features (HW3, Problem 3)
* Key assumption: the coordinates are conditionally independent given label

 The MLE
* The Bayes optimal classifier

28



Lec 11: probabilistic ML Il: GMMs and EM

e The Gaussian mixture model (GMM)

* The EM algorithm
e Whatis it used for? When is it used?

 Main idea: iteratively (E-step) create auxiliary functions that lower bound the likelihood
function; (M-step) maximize the auxiliary functions

e EM for GMMs
* Intuition: clustering by “soft” cluster assignments
e Connection to Lloyd’s algorithm
* Able to derive the EM algorithm for other variants of mixture models (e.g. HW3, Problem 2)

29



Lec 12: probabilistic ML IlI: Bayes nets; HMMs

* Bayesian networks
* Able to do probabilistic reasoning (HW3, Problem 1)

* Real-world examples of different substructure of Bayesian networks (head-to-head, “explain
away”, etc)

e D-separation: definition

* Note: D-separation is a sufficient but not necessary condition of conditional independence

>
« HMMs —13 0O 0O-
* The generative story

* Marginal likelihood: forward / backward algorithm ]

* Decoding — Viterbi’s algorithm (equiv. to staged shortest path)
* Learning —the EM algorithm k=3

t=1 t=2 t=3 t=4

30



Lec 13: Neural networks |

Basic structure of multi-layer Perceptron

Loss functions: square loss, cross entropy loss (multiclass classification)

Stochastic gradient descent; backpropagation for gradient calculation

Main tool: chain rule for derivatives

Some useful tricks to train neural networks (basic understanding)
e Adaptive gradient methods
* Data augmentation
* Dropout

Batch Normalization



Lec 14: Neural networks Il: convolutional networks

e Motivation of convolutional neural networks (CNNs)

* For a local pattern (e.g. edge), have an array of neurons that can detect it in all regions of the
input image / sequence

e Parsimony of convolutional layer: local connection; weight sharing (recall the comparison with
fully-connected layer)

e Basic structure

e Convolutional layer (able to calculate the output shape after passing through a convolution
layer, with different strides / filter sizes / padding)

* Pooling layer
* Fully-connected layer

* CNN examples (basic understanding):
* LeNet, AlexNet, VGG, ResNet (skip connections)
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Lec 15: Neural networks Ill: unsupervised learning

Autoencoder

* Main idea: Train an identity mapping in the distribution support, by forcing to learn a low-
dimensional “encoding”

* Nonlinear generalization of PCA
* How to train?

Variational Autoencoder (VAE)

* Main idea: learn the distribution P(x) by introducing latent representation z & modeling P(x|z)
using a neural net

* Training a VAE — three key ideas and their motivations

Generative Adversarial Network (GAN)
* Main idea: a game between the generator and discriminator
* The distribution divergence minimization perspective
* How to learn the generator? Alternating min / max

Interpretability of the learned latent representation z
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Lec 16: Reinforcement learning

The Markov Decision Process (MDP) framework
* The reward hypothesis
* Difference between RL and supervised learning

Policy evaluation — solving Bellman consistency egn.
* Gaussian elimination
* Fixed-point iteration

Planning (problem setup?)
* Value iteration — solving Bellman optimality eqn.
* Policy iteration

Learning (problem setup?)
* Unique challenges — exploration
* Q-learning
 action value function: Q-function
* Stochastic approximation view of Q-learning
* why / how to incorporate function approximation?
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Lec 17: Learning theory

* The Realizable PAC & Agnostic PAC learning framework
e Basic sample complexity results and their interpretations (recall the examples)

* How can learning theory be used to guide bias-complexity tradeoff?
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Machine learning: a broader view

e Supervised learning -- topics we didn’t touch upon:
* Transfer learning (training/test distribution mismatch) — CIML Chap. 8
* Fairness in learning — CIML Chap. 8
* Ensemble methods (e.g. boosting) — CIML Chap. 13

» Systematic methods for dealing with complex outputs (e.g. multiclass, ranking, structured labels) - CIML Chap.
6,17

* Unsupervised learning — topics we didn’t touch upon:
e Contrastive learning

e Using neural network to model sequences (e.g. language models)

* Interactive learning paradigms we didn’t touch upon:
* Imitation learning - CIML Chap. 18
* Active learning (connections to crowdsourcing)
* Learning with preference-based feedback




