
CSC 580 Principles of Machine Learning

17 Learning theory

Chicheng Zhang

Department of Computer Science

1

*slides credit: built upon CSC 580 Fall 2021 lecture slides by Kwang-Sung Jun

Learning theory

• An attempt to understand machine learning at a fundamental level, with minimal assumptions

• Why?

• Provides mathematical explanation on how many samples are needed to achieve the target
error rate (e.g., 5% error rate).

• Provides the fundamental limits of any ML algorithms (e.g., statements like “without 100
samples, you are not guaranteed to have ≤ 5% error rate”).

• What characterizes the difficulty of a particular ML problem? (e.g., for kernel regression, the
slope of the learning curve depends on the ‘effective dimension’)

2(* examples above is just to give you a sense; rigorous statements are more involved.)

m

The setup: Classification

• 𝒳: the space of instances (e.g., ℝ𝑑)

• 𝒴 : the space of labels (e.g., {−1,1})

• 𝒟: distribution of (instance, label)

• 𝑆~𝒟𝑚 (𝐷𝑚 ≔ 𝐷 ×⋯× 𝐷).

• Hypothesis class ℋ (= function class = concept class): each ℎ is a mapping: 𝒳 → 𝒴

• ℋ is usually of infinite cardinality. E.g., linear classifiers.

• In this lecture, we mostly handle the case of ℋ < ∞. E.g., discretized linear classifiers.

• err(ℎ): the generalization error.

• ෞerr(ℎ): the training error.

• The realizable case: there exists ℎ∗ ∈ ℋ such that err ℎ∗ = 0

• The agnostic case: realizability may or may not be true

3

(↓ automatically implies that there is no label noise)

https://towardsdatascience.com/supervised-learning-basics-of-classification-and-main-algorithms-c16b06806cd3

Probably Approximately Correct (PAC) framework

• Suppose an ML algorithm A returns ෠ℎ ∈ ℋ using a training set 𝑆~ 𝒟𝑚

• Goal: We’d like to say something like “if you have 𝑚 samples, the error rate of ෠ℎ will be at most
1/m” and like this to be true at any case.

• Turns out, this is hard to say this “at any case”. Why?

• We may be unlucky that 𝑆 is unrepresentative of 𝒟

4

Probably Approximately Correct (PAC) framework.

• Suppose an ML algorithm A returns ෠ℎ ∈ ℋ using a train set 𝑆~ 𝒟𝑚

• Goal: We’d like to say something like “if you have 𝑚 samples, the error rate of ෠ℎ will be at most
1/m” and like this to be true at any case.

• Turns out, this is hard to say this “at any case”. Why?

• Amended goal: We’d like to say something like
“if you have 𝑚 samples, the error rate of A will be at most 1/m, with probability at least .95”.

• This kind of guarantee is called: Probably approximately correct (PAC) guarantee.

5

approximately correct probably

PAC framework

[Def] Let ℋ be a hypothesis space. Let 𝒜 be an algorithm that outputs ෠ℎ𝑚.

We say that 𝒜 ‘PAC-learns 𝓗’ with sample complexity function 𝑚(𝜖, 𝛿)

⇔ For any distribution 𝒟 realizable with respect to hypothesis space ℋ, 𝜖 > 0, 𝛿 > 0, we have that

𝑚 ≥ 𝑚 𝜖, 𝛿 ⇒ 𝑃 𝑒𝑟𝑟 ෠ℎ𝑚 ≤ 𝜖 ≥ 1 − 𝛿

[Thm] If ℋ < ∞, then there exists an algorithm 𝒜 that PAC-learns ℋ with 𝑚 𝜖, 𝛿 =
ln |ℋ|+ln

1

𝛿

𝜖
.

• This means: if we fix 𝑚, then w.p. ≥ 1 − 𝛿, err ෠ℎ𝑚 ≤
ln |ℋ|+ln

1

𝛿

𝑚

• Tip: Don’t focus too much on ln
1

𝛿
; if 𝛿 = 0.05 then ln

1

𝛿
≈ 3

6

sample complexity and the error
bound are reciprocal: if you have
one, you can derive the other.

𝜖: target error rate
𝛿: target failure rate

Proof of the theorem

[Thm] If ℋ < ∞, then there exists an algorithm 𝒜 that PAC-learns ℋ with 𝑚 𝜖, 𝛿 =
ln |ℋ|+ln

1

𝛿

𝜖
.

(The proof) By construction: Let 𝒜 be the ERM:

෠ℎ𝑚 = argmin
ℎ∈ℋ

ෞerr ℎ ≔
1

𝑚
෍

𝑖=1

𝑚

1 ℎ 𝑥𝑖 ≠ 𝑦𝑖

• Observe: 𝒟 is realizable => ෞerr ℎ∗ = 0 (no noise in training data) => ෞerr ෠ℎ𝑚 = 0

• Define: ℋ𝜖 = {ℎ ∈ ℋ: err ℎ ≥ 𝜖}

• Intuition: we will show that our training examples can “invalidate”

all classifiers in ℋ𝜖, with high probability

7

(break ties arbitrarily)

ℋ𝜖ℋ

ℋ𝜖
𝐶

ℎ∗

Proof of the theorem

• Define event

𝐸 = {∀ℎ ∈ ℋ𝜖: ෞerr ℎ > 0}

(in words, all high-error classifiers are invalidated by the training data)

• Note: 𝐸 happens => ෠ℎ𝑚 ∉ ℋ𝜖 => err ෠ℎ𝑚 ≤ 𝜖

• Thus, it suffices to show P 𝐸 ≥ 1 − 𝛿. Why is this true?

P 𝐸𝐶 = 𝑃(∃ℎ ∈ ℋ𝜖: ෞerr ℎ = 0)

≤ σℎ∈ℋ𝜖
𝑃(ෞerr ℎ = 0) (union bound)

= σℎ∈ℋ𝜖
ς𝑖=1
𝑚 𝑃(ℎ 𝑥𝑖 = 𝑦𝑖) (independence of examples)

= σℎ∈ℋ𝜖
1 − err ℎ

𝑚
(definition of err ℎ)

≤ ℋ 1 − 𝜖 𝑚 (err ℎ ≥ 𝜖, ℋ𝜖 ≤ ℋ)

≤ ℋ 𝑒−𝑚𝜖 ≤ 𝛿 (1 + 𝑥 ≤ 𝑒𝑥, 𝑚 ≥ 𝑚 𝜖, 𝛿) 8

ℋ𝜖ℋ

ℋ𝜖
𝐶

ℎ∗

Application 1

• Learning conjunctions of Boolean literals.

• each instance 𝑥 = (𝑥 1 ,… , 𝑥 𝑑) has d Boolean features

• Example hypothesis: 𝑥 1 ∧ 𝑥 2 ∧ ¬𝑥(4)

• Recall realizability: the label is determined by some ℎ∗ ∈ ℋ.

• ℋ = 3𝑑 (each variable can be either present with no negation, present with negation, or not
present)

• Q: How many training examples suffice to ensure that with probability ≥ 0.99, the ERM will return a
hypothesis with error ≤ 0.05?

• A: 𝑚 ≥
1

.05
ln 3𝑑 + ln

1

.01

• If d=10, then m ≥ 312

• If d=100, then m ≥ 2290

9

example:

Application 2

• Learning neural networks with a fixed architecture

• ℋ = {𝐿 –layer MLPs with floating-point weight

with 𝑛𝑙 nodes at layer 𝑙}

• #parameters of ℎ ∈ ℋ:s

σ𝑙=1
𝐿 𝑛𝑙−1 𝑛𝑙

• Every neural net can be represented by

32σ𝑙=1
𝐿 𝑛𝑙−1 𝑛𝑙 bits

=> log ℋ ≤ 32σ𝑙=1
𝐿 𝑛𝑙−1 𝑛𝑙

• Training sample size 𝑚 ≥ Ω σ𝑙=1
𝐿 𝑛𝑙−1 𝑛𝑙 ensures that ERM returns a low-error model

10

𝑥 = 𝑧(0) ∈ ℝ𝑛0

𝑎(1) ∈ ℝ𝑛1
𝑎(2) ∈ ℝ𝑛2

𝑎(3) ∈ ℝ𝑛3
𝑎(4) ∈ ℝ𝑛4

𝑎(5) ∈ ℝ

𝑊(1) 𝑊(2) 𝑊(3) 𝑊(4)

𝑊(5)

The Agnostic PAC framework

• Realizable setting: we have assumed that there exists a hypothesis with zero error (denoted by ℎ∗) is
in the hypothesis class ℋ.

• Certainly, not realistic.

• Agnostic setting

• ℎ∗ = argmin
ℎ∈ℋ

err(ℎ) does not necessarily has zero error.

• true or false: “this means that the Bayes error is not zero”?

[Def] Let 𝒜 be an algorithm that takes in 𝑚 samples and outputs a classifier ෠ℎ𝑚 from a hypothesis
class ℋ. Then, we say 𝒜 ‘agnostically PAC-learns hypothesis class ℋ’ with sample complexity
function 𝑚 𝜖, 𝛿 .

⇔ For any distribution 𝒟 and values 𝜖 > 0, and 𝛿 > 0, we have that

𝑚 ≥ 𝑚 𝜖, 𝛿 ⇒ 𝑃 err ෠ℎ𝑚 −min
ℎ∈ℋ

err(ℎ) ≤ 𝜖 ≥ 1 − 𝛿

11

Background: Hoeffding’s bound
(Thm) Let 𝑋1, … , 𝑋𝑚 be i.i.d. random variables from a distribution 𝒟 that is supported on [0,1] with mean 𝜇.
Then,

𝑃 𝜇 −
1

𝑚
෍

𝑖=1

𝑚

𝑋𝑖 ≥ 𝜖 ≤ 2𝑒−2𝑚𝜖2

• equivalently, 𝑃 𝜇 −
1

𝑚
σ𝑖=1
𝑚 𝑋𝑖 < 𝜖 ≥ 1 − 2𝑒−2𝑚𝜖2

• Exercise: Compute a confidence bound on 𝜇 that holds with probability at least 1 − 𝛿.

• Application: let ℎ be a hypothesis. Set 𝑋𝑖 ∶= 1 ℎ 𝑥𝑖 ≠ 𝑦𝑖
• Then, 𝜇 = err ℎ and

1

𝑚
σ𝑖=1
𝑚 𝑋𝑖 = ෞerr(ℎ).

• 𝑃 err ℎ − ෞerr(ℎ) < 𝜖 ≥ 1 − 2𝑒−2𝑚𝜖2

• In other words, w.p. 1 − 𝛿, err ℎ − ෞerr(ℎ) ≤
ln 2/𝛿

2𝑚

12

Applications of Hoeffding’s bound
• Does Hoeffding’s bound imply that for any trained classifier ෠ℎ𝑚, w.p. 1 − 𝛿,

err ෠ℎ𝑚 − ෞerr ෠ℎ𝑚 ≤ err ෠ℎ𝑚 − ෞerr(෠ℎ𝑚) ≤
ln 2/𝛿

2𝑚
?

• What if ෠ℎ𝑚 is a classifier that memorizes data? (e.g. it outputs default label + for unseen examples)

• Example: learning a threshold in [0,1] interval

• ෞerr ෠ℎ𝑚 = 0

• err ෠ℎ𝑚 = 1/2

• Hoeffding’s bound does not apply to ෠ℎ𝑚!

• Key reason: ෠ℎ𝑚 is not chosen before seeing the training examples, violating the assumption

• How to analyze the performance of ෠ℎ𝑚?

• A common approach: assume that ෠ℎ𝑚 ∈ ℋ, and bound err ℎ − ෞerr(ℎ) for all ℎ ∈ ℋ

13

Assigned reading quiz last time

• Andrej Karpathy, “Deep Reinforcement learning: Pong from Pixels”

• What reinforcement learning (RL) method does the author use to train a game-playing agent?
What is its main idea?

• Policy gradient method

• What are some differences between human and this RL agent in solving the game of Pong?

• Human can start playing reasonably without receiving rewards

• Human incorporate prior knowledge, e.g. intuitive physics

• What is the “credit assignment problem”? Why is this a challenge in RL?

14

Uniform convergence via Hoeffding’s inequality

• Thm (uniform convergence): If ℋ < ∞, then with training sample size

𝑚 ≥ 𝑚 𝜖, 𝛿 =
8 ln ℋ +ln

2

𝛿

𝜖2
, we have that w.p. ≥ 1 − 𝛿, the following happens:

for all ℎ ∈ ℋ, err ℎ − ෞerr ℎ ≤ 𝜖/2

• Why do we care about this? This guarantees that the ERM classifier ෠ℎ𝑚 ≔ argmin
ℎ∈ℋ

ෞerr(ℎ) has good

generalization error (see next slide), establishing agnostic PAC learnability

15

Uniform convergence => agnostic PAC learning

Lemma: If it holds that

for all ℎ ∈ ℋ, err ℎ − ෞerr ℎ ≤ 𝜖/2,

then ෠ℎ𝑚 ≔ argmin
ℎ∈ℋ

ෞerr(ℎ) satisfies that err ෠ℎ𝑚 − err ℎ∗ ≤ 𝜖.

Proof: err ෠ℎ𝑚 ≤ ෞerr ෠ℎ𝑚 + 𝜖/2 (Assumption w/ ℎ = ෠ℎ𝑚)

≤ ෞerr ℎ∗ + 𝜖/2 (Optimality of ERM)

≤ (err ℎ∗ + 𝜖/2) + 𝜖/2 (Assumption w/ ℎ = ℎ∗)

= err ℎ∗ + 𝜖

Thm (sample complexity of agnostic PAC learning): If ℋ < ∞, then ERM agnostic PAC-learns ℋ

with 𝑚 𝜖, 𝛿 =
8 ln ℋ +ln

2

𝛿

𝜖2
.

Proof sketch: 𝑚 ≥ 𝑚 𝜖, 𝛿 ⇒ Uniform convergence ⇒ ERM has excess error with high prob.

16

ℎ∗ = argmin
ℎ∈ℋ

err(ℎ)

Establishing uniform convergence

• Thm (uniform convergence): If ℋ < ∞, then with training sample size

𝑚 ≥ 𝑚 𝜖, 𝛿 =
8 ln ℋ +ln

2

𝛿

𝜖2
, we have that w.p. ≥ 1 − 𝛿, the following happens:

for all ℎ ∈ ℋ, err ℎ − ෞerr ℎ ≤ 𝜖/2

Proof: define 𝐸 = {∀ℎ ∈ ℋ: err ℎ − ෞerr ℎ ≤ 𝜖/2}; suffices to show P 𝐸 ≥ 1 − 𝛿

P 𝐸𝐶 = 𝑃(∃ℎ ∈ ℋ: err ℎ − ෞerr ℎ > 𝜖/2)

≤ σℎ∈ℋ 𝑃(err ℎ − ෞerr ℎ > 𝜖/2) (union bound)

≤ σℎ∈ℋ 2𝑒
−
𝑚𝜖2

2 (Hoeffding)

= 2 ℋ 𝑒−
𝑚𝜖2

2 (algebra)

≤ 𝛿 (𝑚 ≥ 𝑚 𝜖, 𝛿)

17

Discussion

18

[Thm] If ℋ < ∞, then there exists an algorithm 𝒜 that agnostically PAC-learns ℋ with

𝑚 𝜖, 𝛿 =
8 ln ℋ +ln

2

𝛿

𝜖2
. I.e., 𝑚 ≥ 𝑚 𝜖, 𝛿 ⇒ 𝑃 err ෠ℎ𝑚 −min

ℎ∈ℋ
err(ℎ) ≤ 𝜖 ≥ 1 − 𝛿

[Thm] If ℋ < ∞, then there exists an algorithm 𝒜 that PAC-learns ℋ with 𝑚 𝜖, 𝛿 =
ln |ℋ|+ln

1

𝛿

𝜖
.

All these results are ‘worst-case’ bounds!

Remember: performance on individual 𝒟 can be much better.

A learning-theoretic view of model selection

• Problem (model selection): given a nested collection of hypotheses classes ℋ1 ⊆ ⋯ ⊆ ℋ𝐾 and a
training sample 𝑆, how to learn a classifier from ∪𝑘=1

𝐾 ℋ𝑘 that has low generalization error?

• Challenge:

• Can do ERM with ℋ𝑘 alone, but what 𝑘 to choose?

• Smaller 𝑘 => min
ℎ∈ℋ𝑘

err(ℎ) is large => underfitting

• Larger 𝑘 => ℋ𝑘 too complex => overfitting

• Suggestion from Learning theory: choose ෠ℎ ∈∪𝑘=1
𝐾 ℋ𝑘 with the smallest upper bound of

generalization error

• ෠ℎ, ෠𝑘 = argmin𝑘∈ 1,…,𝐾 ,ℎ∈ℋ𝑘
ෞerr ℎ +

ln 𝐾|ℋ𝑘|/𝛿

2𝑚

19

test

𝑘

Upper bounds err ℎ w.p. 1 − 𝛿

A learning-theoretic view of model selection

• Suggestion from Learning theory: choose ෠ℎ ∈∪𝑘=1
𝐾 ℋ𝑘 with the

smallest upper bound of generalization error

෠ℎ, ෠𝑘 = argmin𝑘∈ 1,…,𝐾 ,ℎ∈ℋ𝑘
ෞerr ℎ +

ln 𝐾|ℋ𝑘|/𝛿

2𝑚

“Occam’s Razor” – simpler explanations are preferred

• Bound minimization – a sometimes useful heuristic

• Intuition: choosing model conservatively; complexity
regularization

• Also known as the Structural Risk Minimization (SRM) principle

• Thm: the SRM output ෠ℎ has generalization error bounds
competitive with ERM with ℋ𝑘, for all 𝑘 simultaneously.

20

What if the hypothesis space is not finite?

• This is highly nontrivial, given techniques we learned so far.

• Turns out, even if ℋ = ∞, there is an ‘effective capacity’ that replaces log ℋ .

• The ‘right’ notion of capacity: Vapnik-Chervonenkis (VC) Dimension

• PAC sample complexity results carry over with log ℋ replaced with VC ℋ

• E.g., for d-dimensional linear classifiers ℋ, VC ℋ = 𝑂(𝑑)

• Its realizable (resp. agnostic) PAC sample complexity ≈ ෨𝑂
𝑑+ln

1

𝛿

𝜖
(resp. ෨𝑂

𝑑+ln
1

𝛿

𝜖2
)

21

Efforts to push learning theory to practice

• Dziugaite & Roy, Computing Nonvacuous Generalization Bounds for Deep (Stochastic) Neural
Networks with Many More Parameters than Training Data, 2017

22

Bound minimization as learning algorithms?

• There is a school of researchers who believes learning theory can be made practical – it could
actually provide a useful upper bound on the test error (without looking at the test set)

• Some other researchers disagree.

23

• At least, they often characterize the ‘core quantity’ that matters in
reducing test error.

• e.g., some complicated form of ‘norm’ of the weights in the
neural networks is claimed to control the generalization error.

• This can be used to build a practical algorithm – directly use such
a norm as a regularizer

http://proceedings.mlr.press/v80/arora18b/arora18b.pdf, “Stronger Generalization Bounds for Deep Nets via a Compression Approach ”

http://proceedings.mlr.press/v80/arora18b/arora18b.pdf

Summary

• Learning theory: the PAC & agnostic PAC learning framework

• Analysis of Empirical Risk Minimization (ERM)

• Capacity measure of hypothesis classes: VC ℋ , log|ℋ|

• Structural Risk Minimization (SRM) for model selection

• Using learning theory to guide practice

24

Final review

25

General information

• See Piazza @91 about final and project information, if you haven’t already!

• Final exam time and venue: Tuesday, Dec 13, 3:30-5:30pm, GS 701

• You can bring a “cheatsheet” of US letter paper size (two sided) with you

• The focus will be on Lec 9 onwards (although Lecs 1-8’s material may also appear)

• General suggestions:

• The exam will focus on checking your understanding of basics concepts and ideas, and
calculation is likely to be light

• Review homeworks & midterm solns to make sure you have a solid grasp on the basics

26

Lec 9: unsupervised learning

• Clustering

• The k-means objective function (total quantization error)

• Lloyd’s algorithm

• Other clustering algorithm (basic understanding)

• PCA

• Two perspectives: variance maximization and reconstruction error minimization

• Projection to get low-dimensional representation; reconstruction (HW3, Problem 4)

• Able to hand-calculate eigenvalues / eigenvectors of small real-symmetric matrices (e.g. 2x2)

27

Lec 10: probabilistic ML I: Naïve Bayes

• General recipe for probabilistic ML

• Specify generative story; estimate the model (MLE); make decisions based on the estimated
model

• Generative vs. Discriminative approaches for ML

• MLE for probabilistic models with fully-observed data

• First, try to write down the data log-likelihood

• The Naïve Bayes model – discrete features, conditional Gaussian features (HW3, Problem 3)

• Key assumption: the coordinates are conditionally independent given label

• The MLE

• The Bayes optimal classifier

28

Lec 11: probabilistic ML II: GMMs and EM

• The Gaussian mixture model (GMM)

• The EM algorithm

• What is it used for? When is it used?

• Main idea: iteratively (E-step) create auxiliary functions that lower bound the likelihood
function; (M-step) maximize the auxiliary functions

• EM for GMMs

• Intuition: clustering by “soft” cluster assignments

• Connection to Lloyd’s algorithm

• Able to derive the EM algorithm for other variants of mixture models (e.g. HW3, Problem 2)

29

Lec 12: probabilistic ML III: Bayes nets; HMMs

• Bayesian networks

• Able to do probabilistic reasoning (HW3, Problem 1)

• Real-world examples of different substructure of Bayesian networks (head-to-head, “explain
away”, etc)

• D-separation: definition

• Note: D-separation is a sufficient but not necessary condition of conditional independence

• HMMs

• The generative story

• Marginal likelihood: forward / backward algorithm

• Decoding – Viterbi’s algorithm (equiv. to staged shortest path)

• Learning – the EM algorithm

30

t=1 t=2 t=3 t=4

Lec 13: Neural networks I

• Basic structure of multi-layer Perceptron

• Loss functions: square loss, cross entropy loss (multiclass classification)

• Stochastic gradient descent; backpropagation for gradient calculation

• Main tool: chain rule for derivatives

• Some useful tricks to train neural networks (basic understanding)

• Adaptive gradient methods

• Data augmentation

• Dropout

• Batch Normalization

• …

31

Lec 14: Neural networks II: convolutional networks

• Motivation of convolutional neural networks (CNNs)

• For a local pattern (e.g. edge), have an array of neurons that can detect it in all regions of the
input image / sequence

• Parsimony of convolutional layer: local connection; weight sharing (recall the comparison with
fully-connected layer)

• Basic structure

• Convolutional layer (able to calculate the output shape after passing through a convolution
layer, with different strides / filter sizes / padding)

• Pooling layer

• Fully-connected layer

• CNN examples (basic understanding):

• LeNet, AlexNet, VGG, ResNet (skip connections)

32

Lec 15: Neural networks III: unsupervised learning

• Autoencoder

• Main idea: Train an identity mapping in the distribution support, by forcing to learn a low-
dimensional “encoding”

• Nonlinear generalization of PCA

• How to train?

• Variational Autoencoder (VAE)

• Main idea: learn the distribution P(x) by introducing latent representation z & modeling P(x|z)
using a neural net

• Training a VAE – three key ideas and their motivations

• Generative Adversarial Network (GAN)

• Main idea: a game between the generator and discriminator

• The distribution divergence minimization perspective

• How to learn the generator? Alternating min / max

• Interpretability of the learned latent representation z

33

Lec 16: Reinforcement learning
• The Markov Decision Process (MDP) framework

• The reward hypothesis

• Difference between RL and supervised learning

• Policy evaluation – solving Bellman consistency eqn.

• Gaussian elimination

• Fixed-point iteration

• Planning (problem setup?)

• Value iteration – solving Bellman optimality eqn.

• Policy iteration

• Learning (problem setup?)

• Unique challenges – exploration

• Q-learning

• action value function: Q-function

• Stochastic approximation view of Q-learning

• why / how to incorporate function approximation?

34

Lec 17: Learning theory

• The Realizable PAC & Agnostic PAC learning framework

• Basic sample complexity results and their interpretations (recall the examples)

• How can learning theory be used to guide bias-complexity tradeoff?

35

Machine learning: a broader view
• Supervised learning -- topics we didn’t touch upon:

• Transfer learning (training/test distribution mismatch) – CIML Chap. 8

• Fairness in learning – CIML Chap. 8

• Ensemble methods (e.g. boosting) – CIML Chap. 13

• Systematic methods for dealing with complex outputs (e.g. multiclass, ranking, structured labels) - CIML Chap.
6, 17

• Unsupervised learning – topics we didn’t touch upon:

• Contrastive learning

• Using neural network to model sequences (e.g. language models)

•

• Interactive learning paradigms we didn’t touch upon:

• Imitation learning - CIML Chap. 18

• Active learning (connections to crowdsourcing)

• Learning with preference-based feedback

• …
36

