CSC 580 Principles of Machine Learning

16 Reinforcement learning (RL)

Chicheng Zhang

Department of Computer Science

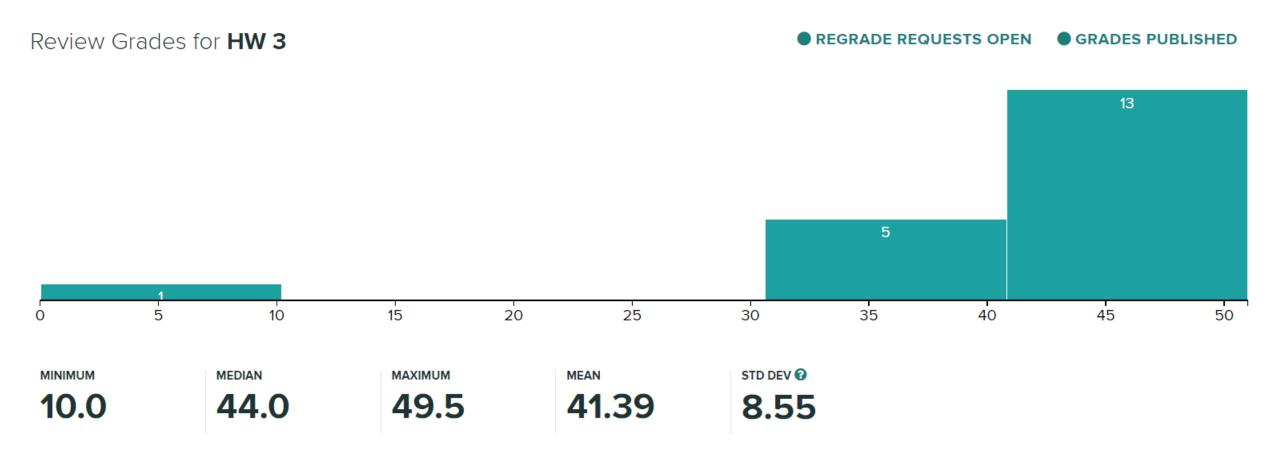
Reinforcement learning references

- "Reinforcement learning" by Sutton & Barto (available online)
- RL course by David Silver: https://www.youtube.com/playlist?list=PLqYmG7hTraZBiG_XpjnPrSNw-1XQaM_gB

Reinforcement learning (RL)

- Task of an agent embedded in an environment
- repeat forever:
 - 1) sense world (=state)
 - 2) reason
 - 3) take an action (this changes the state)
 - 4) get feedback (usually a <u>reward</u> in \mathbb{R}),
 - 5) learn from the feedback

HW3 summary



- Solution guide is also up on D2L
- Final exam & project info up on Piazza

Reinforcement learning (RL)

- Markov decision process (MDP) environment ${\mathcal M}$
- set of states *S*
- set of actions A
- at each time t, agent observes state $s_t \in S$ then chooses action $a_t \in A$
- then receives a reward r_t and moves to state s_{t+1} ; repeat.



$$s_0 \xrightarrow{a_0} s_1 \xrightarrow{a_1} s_2 \xrightarrow{a_2} r_1 r_2$$

These are unknown to the learner!

- Markov assumption:
 - $P(r_t|s_t, a_t, s_{t-1}, a_{t-1}, ...) = P(r_t|s_t, a_t)$
 - $P(s_{t+1}|s_t, a_t, s_{t-1}, a_{t-1}, \dots) = P(s_{t+1}|s_t, a_t)$

Goal: learn a policy $\pi: S \to A$ for choosing actions that maximizes expected cumulative (dicounted) reward $\mathbb{E}_{\pi}[r_0 + \gamma \ r_1 + \gamma^2 r_2 + \cdots \mid s_0] \text{ where } 0 \leq \gamma < 1$

for every possible starting state s_0

Unique challenges in RLI: temporal credit assignment

- Performance measure:
 - focuses on the quality of a sequence of interdependent states / actions
- Aim for maximization of *long-term rewards*
- E.g.
 - Daily exercise: short term long term ++
 - Stay up all night playing video games: short term + long term --
 - Chess tactics: sacrifice pieces
- Different from supervised learning: correct classification on every individual examples
- Need to answer questions like: "what is the key step that caused me to lose this game?" temporal credit assignment

Q: is Markov assumption too strong?

• We oftentimes define the state s_t to be the current observation o_t by the agent

• If so, how can we relax it?

Q: is Markov assumption too strong?

- We can always include the past observations into the state representation to incorporate past while keeping the Markovian assumption.
 - $s = (o_{-1}, o) =$ the state is now a tuple!
 - be sure to disallow any transition that does not make sense
 - transition to $(o^{(1)}, o^{(2)})$ to $(o^{(2)}, o^{(3)})$ is valid
 - transition to $(o^{(1)}, o^{(2)})$ to $(o^{(4)}, o^{(3)})$ is invalid!

 o_{-1} : the previous observation

The intention behind the RL formulation

- Note that the formulation is reward-driven.
- Example: Robot learning: move a dish from one place to another
 - We can assign reward +10 when it accomplishes the task
 - We can also assign reward +1 when it picks up the dish successfully
- Evaluative feedback (cf. Instructive feedback supervised learning)
- The major premise:

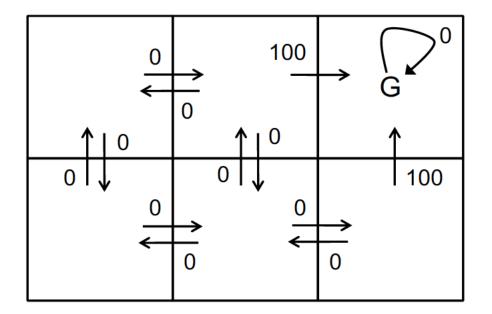
All goals can be described by the maximization of expected cumulative reward.

(from David Silver's lecture)

Goal	Reward
Walk	Forward displacement
Escape maze	-1 if not out yet; 0 if out
Robots for recycling soda cans	+1 if a new can collected; -10 if run into things; 0 otherwise.
Win chess	0 if not finished; +1 if win; -1 if lose

The grid world: Learning to navigate

The grid world



- State s: the location of the agent
- Each arrow represents an <u>action</u> α and the associated number represents <u>reward</u> $r(s, \alpha)$ (assume that it is deterministic for now).

The structure of returns

• Define return at time step *t*:

$$G_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \cdots$$

• The goal of RL: find a policy π that maximizes its return at the start:

$$\mathbb{E}_{\pi}[r_0 + \gamma r_1 + \gamma^2 r_2 + \cdots] = \mathbb{E}_{\pi}[G_0]$$

• G_t satisfies the following recurrence:

$$G_t = r_t + \gamma (r_{t+1} + \gamma r_{t+2} + \cdots) = r_t + \gamma G_{t+1}$$

Current return

Immediate reward Future return

Value function for a policy

- Given a policy $\pi: S \to A$, define its value function $V^{\pi}(s) = \mathbb{E}[\sum_{t=0}^{\infty} \gamma^t r_t \mid s_0 = s, \pi]$
- Important property (<u>Bellman consistency equation</u>):

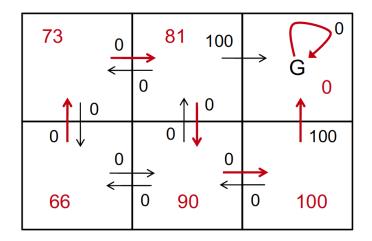
$$V^{\pi}(s) = \mathbb{E}[G_0 \mid s_0 = s, \pi]$$

= $\mathbb{E}[r_0 \mid s_0 = s, \pi] + \gamma \mathbb{E}[G_1 \mid s_0 = s, \pi]$
= $R(s, \pi(s)) + \gamma \mathbb{E}_{s' \mid s, \pi(s)}[V^{\pi}(s')]$
where $R(s, a) = \mathbb{E}[r_t \mid s_t = s, a_t = a]$

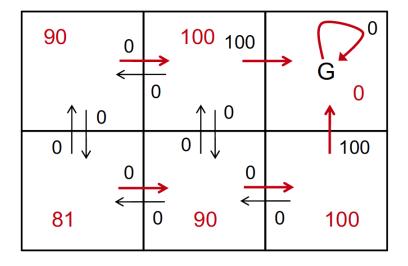
- Fact: there is a single policy π^* such that $\pi^* = \arg \max_{\pi} V^{\pi}(s)$ for all s
 - π^* is called the *optimal policy*
- $V^*(s)$:= the value function achieved by the optimal policy optimal value function
- * Note: We assume deterministic policies for simplicity; nondeterministic policy would assign probabilities to actions given state; i.e., $p(a|s) =: \pi(a|s) \implies V^{\pi}(s) = \sum_{a \in A} \pi(a|s) \left(R(s,a) + \gamma \mathbb{E}_{s'|s,a}[V^{\pi}(s')]\right)$

Value function for a policy π

• Suppose π is shown by red arrows, $\gamma = 0.9$ $V^{\pi}(s)$ values are shown in red



optimal policy π^*



• The Bellman consistency equation:

$$V^{\pi}(s) = R(s, \pi(s)) + \gamma \cdot \sum_{s'} P(s'|s, \pi(s)) V^{\pi}(s')$$

* stochastic policy: $V^{\pi}(s) = \sum_{a} \pi(a|s) \left(R(s,a) + \gamma \cdot \sum_{s'} P(s'|s,a) V^{\pi}(s') \right)$

Policy evaluation

- How to compute V^{π} given MDP \mathcal{M} and policy π ?
- Recall Bellman consistency equation:

$$V^{\pi}(s) = \sum_{a} \pi(a|s) \left(R(s,a) + \gamma \cdot \sum_{s'} P(s'|s,a) V^{\pi}(s') \right)$$

$$= \sum_{a} \pi(a|s) R(s,a) + \gamma \cdot \sum_{s'} \left(\sum_{a} \pi(a|s) P(s'|s,a) \right) V^{\pi}(s')$$

$$R^{\pi}(s)$$

$$M^{\pi}(s,s')$$

- In matrix form (denote by $V^\pi = \left(V^\pi(s)\right)_{s \in S} \in \mathbb{R}^{|S|}$, etc): $V^\pi = R^\pi + \gamma M^\pi V^\pi \qquad \text{(recall the vector/matrix notation here)}$
- A linear system! How to solve it?
 - Gaussian elimination
- Is this efficient?
 - Time complexity: $O(|S|^3)$

Policy evaluation (cont'd)

Fixed point iteration for policy evaluation

Initialize: V^{π} arbitrarily (e.g., all zero).

$$V^{\pi}(s) = \sum_{a} \pi(a|s) \left(R(s,a) + \gamma \cdot \sum_{s'} P(s'|s,a) V^{\pi}(s') \right)$$

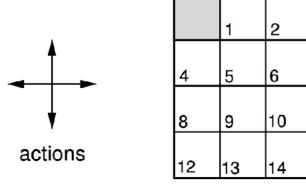
- While V^{π} does not change much from the previous iteration
 - $W^{\pi} \leftarrow V^{\pi}$
 - For each $s \in S$

•
$$V^{\pi}(s) \leftarrow \sum_{a} \pi(a|s) \left(R(s,a) + \sum_{s'} P(s'|s,a) \cdot \gamma \ W^{\pi}(s') \right)$$

- This is called synchronous update
- Asynchronous update: remove $W^{\pi} \leftarrow V^{\pi}$ and perform in-place updates for V^{π}
 - Preferred method.

Fixed point iteration: an illustration

- Episodic MDP (i.e., terminal states involved) with $\gamma=1$
- Shaded squares are **terminal states**
- 4 actions
- Actions to the wall end up with the same state.
- Rewards are -1 until the terminal state is reached.
- The policy π : take an action uniformly at random.



r = -1 on all transitions

Side Q: what's the optimal policy under this reward setting?

Example

 v_k for the Random Policy

- Synchronous updates.
- Values are propagated!

$$k = 0$$

$$\begin{vmatrix}
0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0
\end{vmatrix}$$

$$k = 3$$

$$\begin{vmatrix}
0.0 & -2.4 & -2.9 & -3.0 \\
-2.4 & -2.9 & -3.0 & -2.9 \\
-2.9 & -3.0 & -2.9 & -2.4 \\
-3.0 & -2.9 & -2.4 & 0.0
\end{vmatrix}$$

$$k = 10$$

$$k = \infty$$

$$V^{\pi}(s) \leftarrow \sum_{a} \pi(a|s) \left(R(s,a) + \gamma \sum_{s'} P(s'|s,a) \cdot W^{\pi}(s') \right)$$

Planning in MDPs

Planning in MDPs

- Given: full specification of \mathcal{M} , (specifically R(s, a) and P(s'|s, a) are known)
- Goal: find optimal policy π^* of $\mathcal M$
- Recall: $V^*(s)$ is the value function of the optimal policy.
- Claim: To find the optimal policy, it suffices to find $V^*(s)$ for every state s
- Why?

$$\pi^*(s_t) = \arg\max_{a \in A} R(s_t, a) + \gamma \sum_{s \in S} P(s_{t+1} = s | s_t, a) V^*(s)$$

• How to find $V^*(s)$?

Bellman optimality equation

• Fact: $V^*(s) = \max_{\pi} V^{\pi}(s)$ satisfies the following equation:

$$V^*(s) = \max_{a} \left(R(s, a) + \gamma \cdot \sum_{s'} P(s'|s, a) V^*(s') \right)$$

$$(v_*)$$

$$\max_{a}$$

- This is known as the <u>Bellman optimality equation</u>
- Intuition:
 - $R(s,a) + \gamma \cdot \sum_{s'} P(s'|s,a) V^*(s')$ is the return achieved by: (1) taking action a; and (2) behave optimally afterwards
 - Optimal behavior = optimal action α + optimal behavior afterwards
- Issue: Bellman optimality equation has <u>no closed form solution</u>. (unlike computing V^{π} !)
- However, V^* can still be seen as a fixed point

Algorithm: Value iteration

Key idea: perform fixed point iteration on Bellman optimality equation

$$V^*(s) = \max_{a} \left(R(s, a) + \gamma \cdot \sum_{s'} P(s'|s, a) V^*(s') \right)$$

Initialize V(s) arbitrarily

While $\{V(s)\}_{s\in S}$ is not much different from the previous iteration's $\{V(s)\}_{s\in S}$

- For each $s \in S$
 - $V(s) \leftarrow \max_{a} R(s, a) + \gamma \sum_{s' \in S} P(s'|s, a) \cdot V(s')$
- End For

End While

Next lecture (11/30)

- RL cont'd: Q-learning
- Learning theory (if we have time)

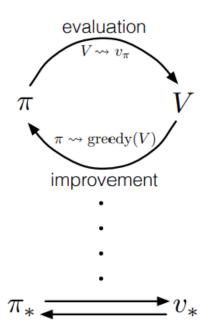
Assigned reading for this lecture and next lecture: <u>Andrej Karpathy, Deep Reinforcement Learning:</u>
 <u>Pong from Pixels</u>

Algorithm: Policy iteration

- The idea:
- estimate optimal value V^* and optimal policy π^* simultaneously & iteratively
- Observe:
 - π^* is greedy wrt V^*
 - V^* is the value function of π^*
- Can we obtain a pair (π, V) that exhibit the above properties?

Algorithm:

- Start from an arbitrary policy π (e.g., assign actions randomly)
- Repeat the following:
 - [Policy evaluation] $V \leftarrow V^{\pi}$ (either solve the linear system or iterative method)
 - [Policy improvement] Update the policy: $\pi \leftarrow \operatorname{greedy}(V)$ For every $s \in S$, $\pi(s) \leftarrow \arg \max_{a} r(s,a) + \gamma \sum_{s' \in S} P(s'|s,a) V^{\pi}(s')$



Policy iteration with inexact policy evaluation

Suppose we perform fixed-point iteration for evaluating V^{π} , with $\pi(a \mid s) = 1/4$, $\forall s, a$

-2.0|-2.0|-1.7| 0.0

what you get if you apply the policy improvement step v_k for the **Greedy Policy** Random Policy w.r.t. v_k 0.0|-2.4|-2.9|-3.0|0.0| |0.0|0.0 0.0-2.4|-2.9|-3.0|-2.9 k = 30.0 |0.0| |0.0|-2.9 |-3.0 |-2.9 |-2.4k = 00.0 | 0.0 | 0.0 | 0.0 -3.0 | -2.9 | -2.4 | 0.00.0 | 0.0 | 0.0 | 0.0 0.0 | -6.1 | -8.4 | -9.0 0.0|-1.0|-1.0|-1.0|optimal -6.1|-7.7|-8.4|-8.4 k = 10policy -1.0 | -1.0 | -1.0 | -1.0 | -8.4|-8.4|-7.7|-6.1 k = 1-1.0|-1.0|-1.0|-1.0 -9.0|-8.4|-6.1| 0.0 -1.0|-1.0|-1.0| 0.0 0.0 | -14. | -20. | -22 0.0|-1.7|-2.0|-2.0-14. | -18. | -20. $k = \infty$ -20.|-18.|-14 -20. -1.7 |-2.0 |-2.0 |-2.0k = 2-2.0|-2.0|-2.0|-1.7

Algorithm: Modified policy iteration

- From previous slide: inexact value functions are still useful!
- Start from an arbitrary policy π (e.g., assign actions randomly)
- [(Inexact) Policy evaluation] $V \leftarrow \text{take } k$ fixed-point iterations for computing V^{π} (so $V \approx V^{\pi}$)

This is <u>not a valid value function</u> anymore (no corresponding π that achieves this value in general)

- [Policy improvement] Update the policy:
 - For every $s \in S$, $\pi(s) = \arg \max_{a} R(s, a) + \gamma \sum_{s' \in S} P(s'|s, a)V(s')$

Summary

- Policy evaluation: just evaluates the value function for a given π
 - closed form / fixed-point iteration
- Planning:
 - Policy iteration: policy evaluation + policy improvement
 - Modified policy iteration: only k steps of policy evaluation
 - Value iteration: k=1

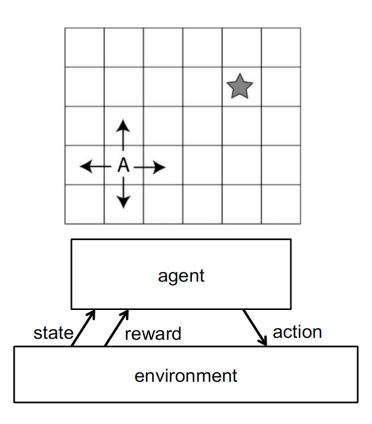
- Recall: so far, we are in the **planning** setting, where we are already given a **model** of the world: i.e. know P(s'|s,a) and P(r|s,a)
- What if we don't? This is called the "learning in MDPs" problem

Learning in MDPs

Learning in MDPs: basic setup

- Given:
 - MDP \mathcal{M} (unknown)
 - The ability to interact with ${\mathcal M}$ with T steps
 - Obtaining trajectory $s_0, a_0, r_0, \dots, s_T, a_T, r_T$

- (Online learning) maximize cumulative reward $\mathbb{E} igl[\sum_{t=0}^T \gamma^t \ r_t igr]$
 - Useful in applications where every action taken have real-world consequences (e.g. medical treatment)
- (Batch learning) output a policy $\hat{\pi}$ such that $V^{\hat{\pi}}$ is competitive with V^*
 - Useful in applications where experimentations are affordable (e.g. laboratory rats, simulators)



Learning in MDPs: a taxonomy of approaches

Model-based RL:

Repeat:

• $\widehat{\mathcal{M}}$ \leftarrow Estimate \mathcal{M} based on data (e.g. by MLE)

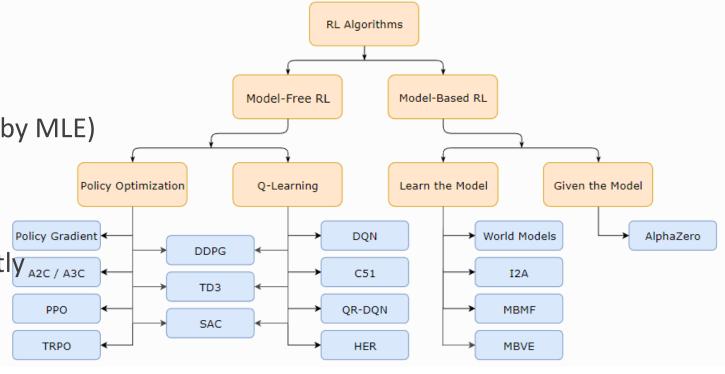
• Plan according to $\widehat{\mathcal{M}}$

• Model-free RL: do not estimate $\widehat{\mathcal{M}}$ explicitly A2C/A3C

Direct policy search

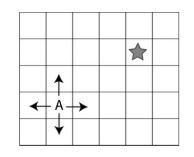
E.g. policy gradient (REINFORCE)

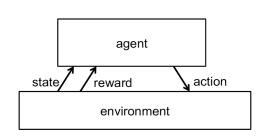
- Value-based methods
 - E.g. Q-learning (this lecture)
- Actor-critic: combination of the two ideas



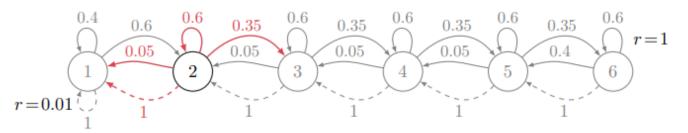
Unique challenges in RL II: exploration

- Learning agent's data is induced by its own actions
 - This is another key difference with supervised learning
- How to collect useful data?
 - The exploration challenge



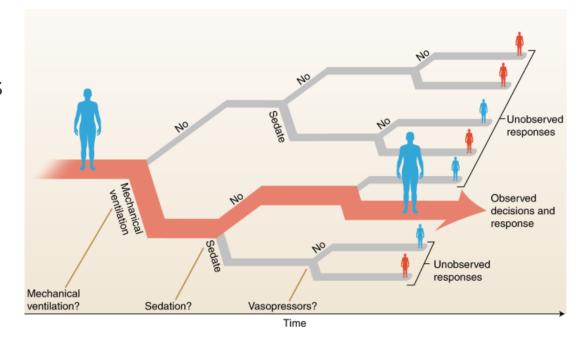


- Rough intuition: collect data that "covers" all states and actions
 - Uniform exploration: take actions uniformly at random
- Caveat: uniform exploration may fail because of some hard-to-reach states
 - E.g. RiverSwim [Strehl & Littman, 2008]



Unique challenges in RL II: exploration (cont'd)

- Extra challenge in the online learning setting
 - Need to take good actions that yield high rewards
 - Balance exploration vs. exploitation
 - Not an issue in the batch learning setting



- Popular idea:
 - ϵ -greedy: w.p. 1ϵ , choose action that is believed to be optimal based on the information collected so far; otherwise, choose actions uniformly at random.
 - Again, ϵ -greedy may fail in some hard MDP environments

Q-functions: motivation

- Issue of V^{π} : only encodes the quality of states
 - But we need to learn what actions are good
- Is there a function that encodes the quality of actions as well?
- Action-value functions (Q-functions):

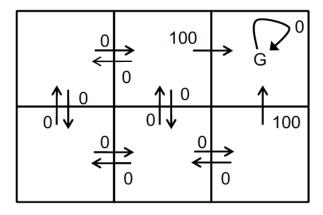
•
$$Q^{\pi}(s, a) = \mathbb{E}[G_0 \mid s_0 = s, a_0 = a, \pi] = R(s, a) + \gamma \sum_{s' \in S} P(s' \mid s, a) V^{\pi}(s')$$

The optimal Q function

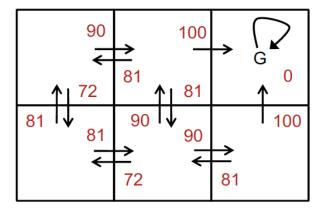
•
$$Q^*(s,a) = \mathbb{E}[G_0 \mid s_0 = s, a_0 = a, \pi^*] = R(s,a) + \gamma \sum_{s' \in S} P(s' \mid s, a) V^*(s')$$

- The optimal policy can be extracted from Q^* :
 - $\pi^*(s) = \arg\max_{a} Q^*(s, a)$

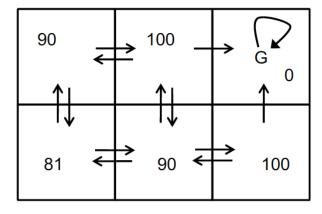
Q-values



r(s, a) (immediate reward) values



 $Q^*(s,a)$ values



 $V^*(s)$ values

Q-learning: motivation

We do not know the state transition nor the reward function.

- Instead of learning these model parameters, we directly attempt to estimate Q^*
 - Recall: "When solving a problem of interest, do not solve a more general problem as an intermediate step" – Vladimir Vapnik
- Similar to V^* , Q^* also satisfies a <u>Bellman-optimality equation</u>:

$$Q^*(s,a) = R(s,a) + \gamma \cdot \sum_{s'} P(s' \mid s,a) \max_{a'} Q^*(s',a')$$

Recall:
$$Q^*(s, a) = r(s, a) + \gamma \sum_{s' \in S} P(s'|s, a) V^*(s')$$

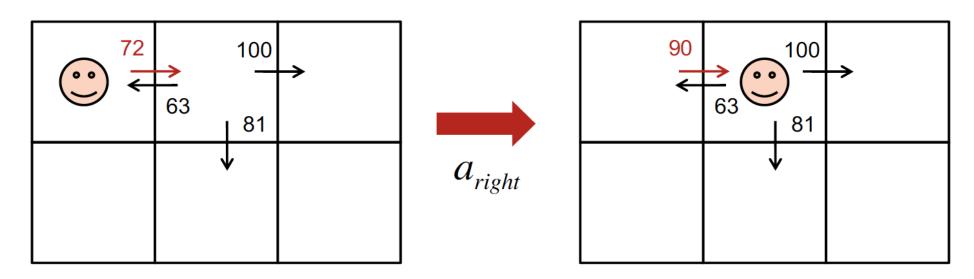
We will use this to design our learning rule

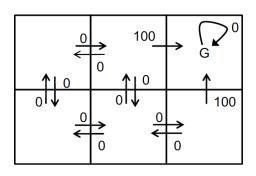
Algorithm: Q-learning (deterministic transitions/rewards)

- Assume that we are in the tabular setting: S and A are both finite
- Initialize: $Q(s, a) = 0, \forall s, a$
- Observe the initial state s
- Repeat:
 - Select an action a and execute it (e.g., ϵ -greedy)
 - Receive a reward r
 - Observe a new state s'
 - Update: $Q(s, a) \leftarrow r + \gamma \max_{a'} Q(s', a')$ (similar to value iteration)
 - $s \leftarrow s'$

$$Q^*(s,a) = R(s,a) + \gamma \cdot \sum_{s'} P(s' \mid s,a) \max_{a'} Q^*(s',a')$$

Q-learning: update example





r(s, a) (immediate reward) values

$$Q(s_1, a_{right}) \leftarrow r + \gamma \max_{a'} Q(s_2, a')$$

 $\leftarrow 0 + 0.9 \max\{63, 81, 100\}$
 $\leftarrow 90$

Q-learning for stochastic transitions/rewards

- Our update equation is problematic: $Q(s, a) \leftarrow r + \gamma \max_{a'} Q(s', a')$
- For stochastic worlds:

- $s_0 \xrightarrow{a_0} s_1 \xrightarrow{a_1} s_2 \xrightarrow{a_2} r_1 \qquad r_2$
- Fix s, a, (next state, reward) s', r seen is stochastic
- Even if $Q = Q^*$ in the previous iteration, Q(s, a) will deviate from $Q^*(s, a)$ after the update
- This results in Q(s, a) not converging
- How to fix this? Recall:

$$Q^*(s,a) = R(s,a) + \gamma \cdot \sum_{s'} P(s' \mid s,a) \max_{a'} Q^*(s',a')$$

• We can use the idea of stochastic approximation (also called temporal difference learning in the RL context)

Stochastic approximation

- Given a *stream* of data points $X_1, ..., X_n \sim N(\mu, 1)$
- How to estimate μ in an *anytime* manner?
- Idea 1: at time step n, output estimate $\hat{\mu}_n = X_n$
- Can we do better?
- Idea 2: at time step n, output estimate $\hat{\mu}_n = \frac{1}{n}(X_1 + \dots + X_n)$
- This is equivalent to $\hat{\mu}_n=(1-\alpha_n)\hat{\mu}_{n-1}+\alpha_n X_n$, where $\alpha_n=\frac{1}{n}$ Old estimate New data (conservativenss)

Q-learning for nondeterminstic transitions/rewards

 $Q^{*}(s,a) = R(s,a) + \gamma \cdot \sum_{s} P(s' \mid s,a) \max_{a'} Q^{*}(s',a')$

- Initialize: $Q(s, a) = 0, \forall s, a$
- Observe the initial state s
- Repeat
 - Take an action a
 - e.g., ϵ -greedy (taking $\operatorname{argmax}_a Q(s, a)$ w.p. 1ϵ)
 - or Boltzmann exploration: $a \sim P(a|s) = \frac{\exp(Q(s,a)/\tau)}{\sum_{a'} \exp(Q(s,a')/\tau)}$
 - Receive the reward r
 - Observe the new state s'
 - Update: $Q(s, a) \leftarrow (1 \alpha)Q(s, a) + \alpha \left(r + \gamma \max_{a'} Q(s', a')\right)$
 - $s \leftarrow s'$

 α is a hyperparameter! (next slide)

The choice of α

- $Q(s,a) \leftarrow (1-\alpha)Q(s,a) + \alpha \left(r + \gamma \max_{a'} Q(s',a')\right)$
- For example, $\alpha = \frac{1}{1 + \# times(s,a)}$.
- Q: Why is this a reasonable choice?

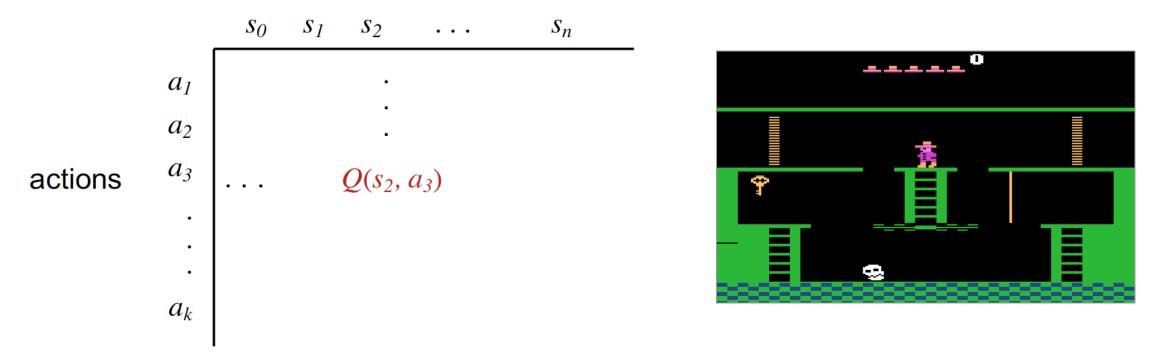
Discussion

- Q-learning will converge to the optimal Q function (under certain niceness assumptions on the MDP, exploration policy, and step size scheme)
- In practice, it takes a lot of iterations!

- Comparison: Model-based learning vs. Q-learning when choosing actions
 - Model-based
 - need to look ahead using some estimates of rewards and transition probabilities (Model Predictive Control)
 - Q-learning (model-free)
 - just choose the action with the largest Q value

Challenge of Q-learning: large state spaces

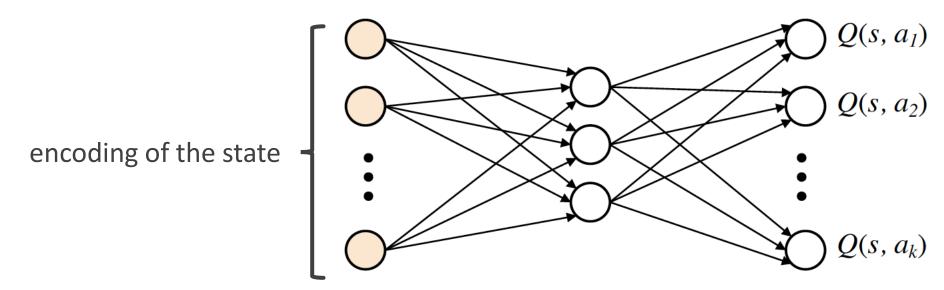
• Q-learning requires us to maintain a huge table, which is clearly infeasible with large state spaces states



How to design a Q-learning-style algorithm that can handle large state spaces?

Q function approximation

- We can use some other function representation (e.g. a neural net) to compactly encode a substitute for the big table.
- We've been thinking states as discrete (the set S), but in fact, they can be a feature vector!

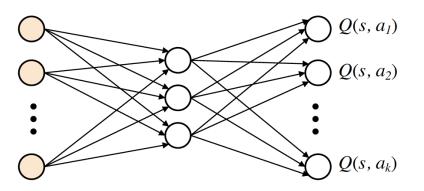


each input unit can be a sensor value (or more generally, a feature)

Q: why is this a good idea?

Why Q function approximation?

- 1. memory issue
- 2. is able to *generalize across states*! may speed up the convergence.
- Example: 100 binary features for states. 10 possible actions.
- Q table size = 10×2^{100} entries
- NN with 100 hidden units:
 - $100 \times 100 + 100 \times 10 = 11k$ weights (not counting bias for simplicity)



Algorithm: fitted Q-learning

Repeat

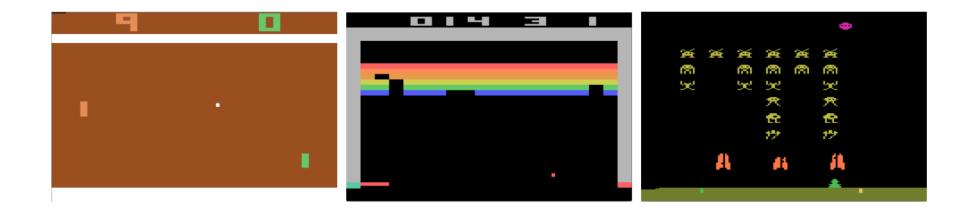
- observe the state s
- compute Q(s, a) for each action a (forward pass on the NN)
- select action a (use ϵ -greedy or Boltzmann exploration) and execute it
- observe the new state s' and the reward r
- compute Q(s', a') for each action a' (forward pass on the NN)
- update the NN with the instance
 - $\chi \leftarrow s$

•
$$y \leftarrow (1 - \alpha)Q(s, a) + \alpha \left(r + \gamma \cdot \max_{a'} Q(s', a')\right)$$
 (label for Q(s,a))

Calculate Q value you would have put into the Q-table and use it as the training label. Use the squared loss and perform backpropagation!

Fitted Q-learning example: Atari games

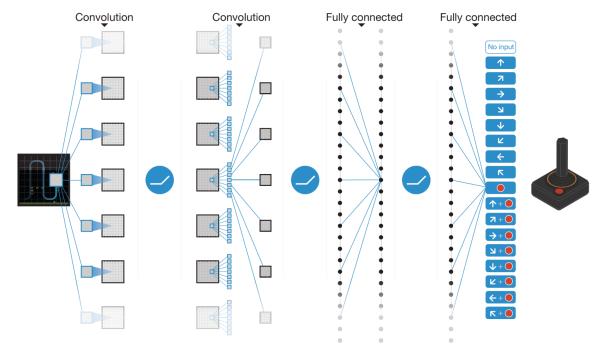
- Human-level control through deep reinforcement learning (Mnih et al, 2013, 2015)
- Tested Fitted Q-learning on 49 Atari games



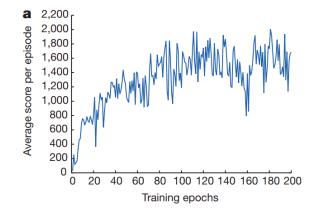
- Achieves >=75% of human professional players' scores on 29 games
- Can significantly outperform human players in many games

Fitted Q-learning example: Atari games (cont'd)

- The neural network for fitting Q values
 - Convolutional architecture to handle states as images

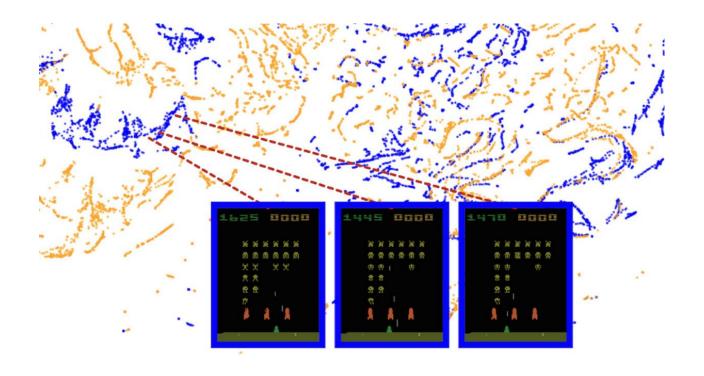


• Learning curve: (Space Invaders, ϵ -greedy with $\epsilon=0.05$)



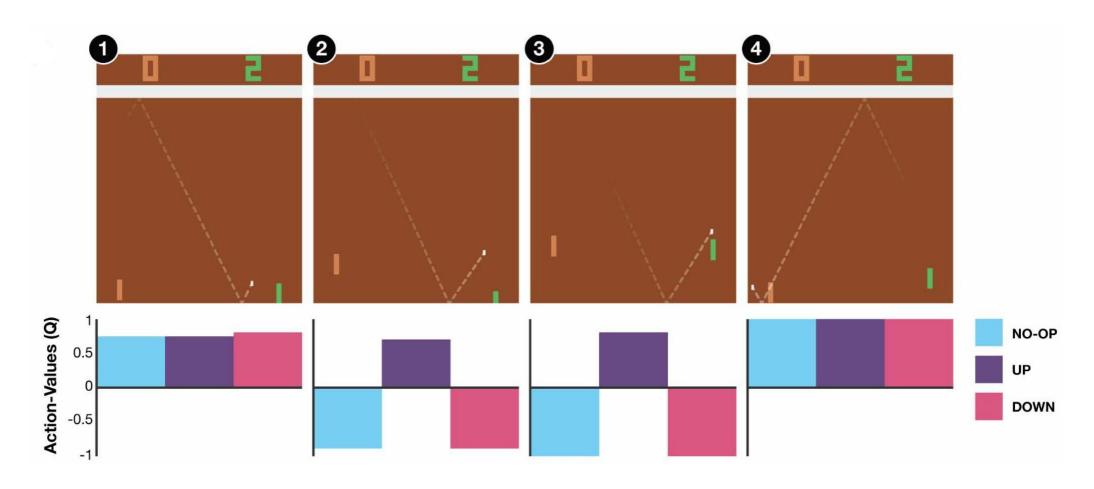
Fitted Q-learning example: Atari games (cont'd)

- Q-network's last hidden layer extracts useful representations
- Consequently Q-network provides Q-value estimates that generalize across states



Fitted Q-learning example: Atari games (cont'd)

• The learned Q functions are sensible



Summary

- MDPs: Reward driven philosophy
- Policy evaluation: Bellman consistency equations; fixed point iteration
- Planning in MDPs: value iteration; policy iteration
- Learning in MDPs: Q-learning; function approximation

Next lecture (12/5)

Learning theory: fundamental limits of ML algorithms

 Assigned reading: <u>Andrej Karpathy, Deep Reinforcement Learning: Pong from Pixels</u> (We will have a reading quiz on this next time)