15 Unsupervised learning with NNs

Chicheng Zhang

Department of Computer Science

A THE UNIVERSITY
. OF ARIZONA

*slides credit: built upon CSC 580 Fall 2021 lecture slides by Kwang-Sung Jun

This lecture

 Autoencoder
e Variational auto-encoder

e Generative Adversarial Networks (GANSs)

Unsupervised learning review

Recall: unlabeled data.

Q: what is the main goal of unsupervised learning?
* Represent data using a low degree of freedom

Examples: clustering, PCA.

Recall PCA can be used for
‘representation learning’ = learning useful
(and compact) features.

(learned features = projected feature vector)

NNs can be used to do generalizations of PCA.

Example: MNIST dataset /o (exe= 25 el

PC1 vs PC2 for MNIST Images 0 =9

30

PC 1

Autoencoder

Introductory example

e Suppose you have a number in {0,1,2,3,4,5,6,7}

* What would be a compact representation (say, for computers)?

* Q: how many bits do we need?

Observations from early days

Train a neural net by imposing
squared loss on all the output
units & backpropping.

Q: What do the hidden values
look like?

Input Hidden Output
Values -

10000000 — .89 .04 .08 — 10000000
01000000 — .15 .99 99 — 01000000
00100000 — .01 .97 .27 — 00100000
00010000 — 99 97 71 — 00010000
00001000 — .03 .05 .02 — 00001000
00000100 — .01 .11 .88 — 00000100
00000010 —» 80 .01 .98 — 00000010
00000001 —» .60 .94 .01 — 00000001

FIGURE 4.7 |
Learned Hidden Layer Representation. This 8 x 3 x 8 network was trained to learn the identity

function, using the eight training examples shown. After 5000 training epochs, the three hidden unit
values encode the eight distinct inputs using the encoding shown on the right. Notice if the encoded
values are rounded to zero or one, the result is the standard binary encoding for eight distinct values.

p107, Tom Mitchell, “Machine Learning” ¢

Autoencoder using deep networks

Input Output
\\ - - //
\ -~ ~ - - /
/ \ ~ — / \
\ Code /
\ / \ / N - </ \ / \ /
/ \ N </ / \
\ / \ /
w \ 2 v\ / \y
/ \ \ / / \
/ \ \ / / \
/ \
P N /- ~ 0 P Iy
\ / > <D \ /
N VA ~_ N
/ P ~ < \
// — - —~ ~ \\
g) N\ J
Yo Yo
Encoder Decoder

We can do this for any data!

How to use it:
- Encoder: for dimensionality reduction

PC1

PC1 vs PC2 for MNIST Images

- Decoder: generate new samples from the distribution by varying the input ‘code’

image from https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798

PCA as a linear neural network

 Recall PCA

linear = no activation

PCA pseudocode

* Input: data matrix X € R™*¢

1 /
Preprocess: Let u = - i=1 x;. Compute x; = x; — u, Vi € [n]

fonT
Compute the top k eigenvectors V = [vy, ..., 1] of 71:2}';1 X; (x,;)

[]

Feature map: ¢(x) = tvlT(x —), .., v (x — pu) | € R¥
' (o?{‘ﬁ crent.

[]

Decorrelating property: (" whitening")
. /.

A \© o0
. % ()" = DiGQML [o AZ"'O}

» Reconstruction (the actual projection): apply u + Vg (x)

—

v)

PCA as a linear NN

* k units in the hidden layer.

* The PCA can be represented as a neural network

(with constant bias added in each layer):

* Encoder: h = - X +

e Decoder: X

|l

<
[\

<
&~

.
—UiH

.
VM

* Feature map: ¢(x) = (vlT(x —), ., vp (x — ,u)) € Rk
« Decorrelating property: (" whitening ") " coe]
iy ey =0 & }
. % i=1 ()P ()" = Diag(Ay, .., A)) [

(L)
* Reconstruction (the actual projection): apply 1 + V¢ (x)

Autoencoder using deep networks

Input Output
\\ - - //
\ -~ ~ - - /
/ \ ~ — / \
\ Code /
\ / \ / N - </ \ / \ /
/ \ N </ / \
\ / \ /
w \ 2 v\ / \y
/ \ \ / / \
/ \ \ / / \
/ \
P / \ /- ~ 0 ; \ I\
\ / > QD \ /
N VA ~_ N
/ P ~ < \
// — - —~ ~ \\
N /) N\ J
Yo Yo
Encoder Decoder

We can do this for any data!

What about images?

10
image from https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798

Training autoencoders

Input Output
. \\\\ ////
* Given: \ ~< - /
d \ // \\ = - Code _ - // \\ /
e data x4, ...,x, € R%, \ = S = A v/
/ \ \ / / \
. . . / / \ \ /
e Embedding dimension k (k < d) ‘)/ \ \ % Y \
"\ /A AN VAN AN a
/ \ / \
\ / /- ~_ D \ /
: // \ / \[|27 ~Q 7 \ ; \\
* Goal: obtain P Ve ~ N\
» Encod k fp: R% > R¥ -7 T
ncoder network fg: R* —
N J N J
* Decoder network gg: R¥ - R e ~
Encoder Decoder

* Such that for every i, x; = g4 (fo (x;))

* Most commonly used formulation (can be straightforwardly trained by gradient-based methods):

minimizeg 4 Z’{‘:l”xi —Jd¢ (fe (xi)) ”2
I |

|
Reconstruction error 11

Autoencoder for images

* Encoder: conv-conv-pool-conv-conv-pool-...,
e Decoder: conv-conv-pool-...?? It will reduce the spatial dimension rather than increasing it.

* How to do the opposite of pooling (or conv with stride length >= 2)?

[teeo i

Following slides largely based on Stanford cs231n https://youtu.be/nDPWywWRIR0?t=1109
http://cs231n.stanford.edu/slides/2017/cs231n_2017 lecturell.pdf 12

“Un”pooling

Nearest Neighbor N P “Bed of Nails” 1 o0l 0o
112 1 1|2 2 T2 000 o0
3 4 - 3 3|4 4 3 4 3,014 0
3 3|4 4 O O0}|0 0
Input: 2 x 2 | Output: 4 x 4 Input: 2 x 2 Qutput: 4 x 4

(fig. from Stanford cs231n) =2

Max unpooling

Max Pooling

. Max Unpoolin
Remember which element was max! P 9

Use positions from

1 2 | 6 3 pooling layer 0 0 2 0
3 /5|2 1 5 6 12 01 0 0
- : " B B 3 4
1 212 1 l 8 Rest of the network 0 0 0 0
7 314 | 8 3 0O 0 4
Input: 4 x 4 Output: 2 x 2 Input: 2 x 2 Output: 4 x 4

Corresponding pairs of
downsampling and

The network must be symmetric!
upsampling layers

(fig from Stanford cs231n) 14

A smarter way (recommended): Transposed convolution

* Other names: upconvolution, fractionally strided convolution, backward strided convolution,
deconvolution (don’t use this name)

e Recall: 3 x 3 convolution with stride 2 pad 1.

> Filter moves 2 pixels in

Dot product the input for every one

between filter pixel in the output

and input
Stride gives ratio between
movement in input and
output

Input: 4 x 4 Output: 2 x 2

(fig from Stanford cs231n)

15

Transposed convolution

Sum where

3 x 3 transpose convolution, stride 2 pad 1 output overlaps

E—— Filter moves 2 pixels in

Input gives the output for every one

weight for pixel in the input

filter
Stride gives ratio between
movement in output and
input

Input: 2 x 2 Output: 4 x 4

Disclaimer: this is not the inverse of convolution!
Rather, it’s just a variation of the convolution. (fig from Stanford cs231n) 16

1D transposed convolution

Input Filte

a
b

|

.

—

_—
\

Output

ax

ay

aZ

bX

bz

Output contains
copies of the filter
weighted by the
input, summing at
where at overlaps in
the output

(fig from Stanford cs231n) 17

Output

1D transposed convolution: matrix form ™ <

a

"& by

\ bz
We can express convolution in Transposed convolution multiplies by the
terms of a matrix multiplication transpose of the same matrix:
Ixa=Xa 2+l = XTa
m i 0 [ar]
a y 0 ay
r y z 0 0 0| |b] _| ay+bz g2 @| (@] _ |oz4bz
0 0 y z O0f|c bx + cy + dz 0 vyl [b] by
g 0 =z bz
- R) 0

Example: 1D conv, kernel
size=3, stride=2, padding=1 Example: 1D transposed conv, kernel

size=3, stride=2, padding=0

(fig from Stanford cs231n) 18

Next lecture (11/21)

* Variational autoencoders; Generative Adversarial Networks (GANSs)

* Assigned reading this week:
e Stanford CS231n (currently offered by Fei-Fei Li, Jiajun Wu, and Ruohan Gao): notes on

Convolutional Networks

19

http://cs231n.github.io/convolutional-networks

Generative networks

Popular method for learning distributions

Input: x4, ..., x,;, ~ D on R% some base distribution U (e.g. uniform, standard Gaussian)

Goal: learn network fg: R* - R%, such that fa#u ~ D (usually k < d)

generated distribution true data distribution

p(x)

fo#tu: the distribution of fy(z) when z ~ unit gaussian
“Push-forward measure” O

generative

model

‘\ 4
(neural net) ~[loss| -

Y4

image space image space

* fp gives a low-degree-of-freedom representation of D
* Many applications, e.g. Digital art, Image denoising, Privacy-Preserving Synthetic Data, ..

 We will see two methods to train such networks: VAE and GAN

https://www.cylab.cmu.edu/_files/documents/2020-partners-conference-files/4-wu.pdf
https://openai.com/blog/generative-models/

20

Generative network: a simple example

e Eg.d=k=1
* pp(x) X — \/_, > . = uniform([0,1])

=> set fp(z) = z2 ensures that f#u = D

0.8 1

0.6 1

0.4 A

0.2 1

0.0 4 l
4 X -

0.0 0.2 0.4 0.6 dﬂ ﬁﬂ

https://mijt.cs.illinois.edu/ml/slides-gn-1.pdf

Variational autoencoder

22

Variational autoencoder (VAE)

* Generative model counterpart of autoencoder. Also, a good example of using deep learning for probabilistic

models.

* Given: p(z) (e.g. standard Gaussian), data x4, ..., x,, ~ D

Sample from
* Goal: build a network 0 representing p(x|z), so that true conditional
pe(x) = [po(x,2) dz = [pg(x|2)p(2) dz po-(z | 29)
matches D as well as possible
Sample from
true prior

* How do we model pg(x|z) using a neural network? po~(2)

i

A

Decoder
network

Z

23

Modeling conditional distribution using neural networks

* Assume p(x|z) has a specific form x | z~N (ty|z, Xx|z), Where X, is diagonal

* Use neural network (with weight 8) to model the parameters of the distribution

* It’s now easy to sample from pg(x)!
* Draw z ~ p(2)
* Drawx ~ pg(x | z):
* Use network 6 to compute fy |z, Ly,
* Draw e ~ N(0, 1)

 Compute x; = (,ux|z)l, + /(lez)iiei

Mean and (diagonal) covariance of x | z

NTTT—

22F

Decoder network

pe(|2)

(parameters 0)

E$|.z

(fig from Stanford cs231n)

24

Variational autoencoder (VAE)

Recall: pg(x) = [pg(x,2) dz = [pg(x|2)p(2) dz
Q: How can we train the network?
MLE: maximizeg Y.i-, In pg(x;)
The issue:
* Naively calculating pg (x;) is intractable

It takes 3 tricks!
e evidence lower bound (ELBO)
 auxiliary network
* reparameterization trick

Mean and (diagonal) covariance of x | z

NTTT—

Hz|z

Eml.?;

Decoder network

Pe(|2)

(parameters 0)

(fig from Stanford cs231n)

25

Recall: EM as maximizing surrogate likelihood
()
0

L£(0) = Inp(x;6)
= > q(2)Inp(x;0) // for any choice of q(+)

-— N T .

N (1 [12) P(@:0)p(z, 25 0) .
_ZZZQ()1 (q(z) p(x,z;0)) ﬁ&{(g 9')
= (z)ln(p(x,z;e))+z (z)ln(P(ﬂ?;f?)cJ(Z)) - Y J.
hz 4 q(Z) ¥z E p(maz;g) g Q '9//
= Q(0,0') ~KL(g() || p(- | :6))

KL-divergence properties

* Previously in EM: choose q(z) = p(z | x,6") gigg”g% % 8' :; ::: z'q

* Due to computational intractability of p(z | x, 8"),
VAE does not choose q this way KL divergence is an “asymmetric” distance measure

26

The first trick: maximizing ELBO instead

_ p(x,2)
log p(x) —\f q(zx)log =

= L0p, &%)

L(p,q) is called the evidence lower bound (ELBO)

dz + KL(q(z|x) || p(z]x))
I (Just changed g(z) to q(z|x) from our previous derivation)

* It is a lower bound of log-likelihood. Why?

Key idea of VAE: Instead of maxiemize Y= logpg(x;), we perform
max@irqnize Yi=1 L(xi, g, Q)

where g = q(z | x) is chosen from a family of conditional distributions

* Why this works: when g approximates pg(z | x) well, then ELBO also approximates likelihood well

27

Side note: alternative form of ELBO

logp(x) = [q(z1x) log 225 dz + KL(q(z1x) | p(z1))
\ Just changed g(z) to q(z|x) from our previous derivation.

= L0p, &%)

L(p,q) is called the evidence lower bound (ELBO)

L@.q) = [q(z1x) 1og 228 dz = [q(z1x) logp(x|2) dz + [q(z]x) log B2 dz

= | q(z|x) logp(x|2) dz — KL(q(z|x) || p(2))

Interpretation of maximizing ELBO over p, q:
* Maximize “consistency” between p and g: p is MLE over data drawn from ¢
* keep q(z|x) not too far from the prior p(z)

28

The second trick: auxiliary network

* Note: the inequality works for any g(z|x) (Q: which one is a good one?)

* Idea: build a neural network (with weight ¢) to model q(z|x) —denote it by g4 (z|x)

 We didn’t intend it, but it now looks like the autoencoder!

Sample z from z|$ ~ N(,Ufz|m7 Ezl:ﬂ)

au'z|:1:

Encoder network

e (2|T)

(parameters ¢)

z|m

Sample x|z from $|z ~ N(u$|z, Yiz|z)

4”1:1:|z

Decoder network
po(x|2)

(parameters 0)

$|z

(fig from Stanford cs231n)

29

Training

* Goal: ma%igqize Y. qp(z|x) logpg(x|z) dz — KL(q¢(Z|x) || p(z))

* How to train? Gradient ascent on both 8 and ¢!

* The gradient for 6:

Rewrite the ELBO objective: L(p,q) = Eq,(2l2) [lnpg(a: | 2) —In qﬁ)(é;c)]
Exchange gradient with Vo qus(ZIx) [lnpg(ac 2) ~1In qe(| Ll?)] - E%(Z|$) [V@ In pg(| Z)]
expectation (integration): p(2)

Now, the consequence is that we can draw a sample 2’ ~ ¢4(z |) and then compute the gradient

Volnpg(x | z), which is an unbiased estimator for Vo E (. |.) [ln po(x]z)—1In qq;(é;”)] Thus, we can take

the computed gradient as a stochastic gradient, and perform the standard SGD!

30

Training

E(paQ) = Eq¢(z|$) [lﬂpg(iﬁ | Z) —In Qc;;(é;c)]
The gradientfor ¢: V4 E, (. [lnpg(a: | z) - In q¢(,(z: |):U)]
p(z

Q: Can we exchange the gradient operator and the expectation operator?

No: change in ¢ affects both the integrand and the underlying distribution!

31

The third trick: reparameterization for gradient calculations

key observation: gy (z | x) is the pdf of N(th:a 22|x)
~ Suppose this is a diagonal matrix

then, a sample z ~ q4 (- | x) can be written as

X; = (,ux|z)l_ + /(lez)uei’ wheree; ~ N(0,1),i=1,..,d

let’s use the notation z(¢, x, {€;}) to make the dependence explicit. then,

qs(z | x)
p(z)

Vo Eq,(zlz) [Inpo(z | 2) —In q9(2(, 2, {ci}) | m)]

p(z(¢,z,{€i}))
qp(2(9, 2, {ciy) |))]
p(2(¢,2,{ci}))

] = Vqﬁ,E{gi} |:1Ilp9(33 ‘ z(gb,a:, {61})) —In

=E(. [W (hlpe(w | 2(¢,z,{€i})) —In

sample {¢;}, compute the gradient, and descend!

32

The reparameterization trick

9, D

A general way to calculate unbiased estimates of V(,,[EZqubf(z) a 0

“Pushes the randomness of z into €” 0 o 0 o e

e Tutorial - What is a variational autoencoder? — Jaan Altosaar

Original Reparametrized

It’s about the way we define the distribution q4(z | x) through the normal distribution.

* Let the network output the parameters of the normal distribution, so we can easily
reparameterize it — disentangle the network output and the source of randomness!

 More generally, the same technique can be applied to any exponential family distribution.

Otherwise, computing the derivative is a pain (and researchers tried it and then found that it has a
very high variance in the stochastic gradient..)

33

https://jaan.io/what-is-variational-autoencoder-vae-tutorial/

Tra | N | N g \/A E S uMmma ry * For each x, encoder forward pass, get (izx, Zz|x),

sample {€;}, compute z, decoder forward pass, get
(Ux|zs Zx|z), COMpute the ELBO.

Maximize * Then, compute the gradients for both encoder ¢

likelihood of and decoder 0, perform gradient ascent.
original input

being
E. [Iogpe((@) |)] — Drcr(gg(z | 27) || pa(z)) reconstructed M|z Emlz
E(w(’ﬁ’, 6,) Decoder network \/
po(z|z)

V4
Sample z from z|:B ~ N(I-Lzlm) Zz|a:)

/\

Hz|z z|a:r
Encoder network
wil) N

Input Data Y

Make approximate
posterior distribution
close to prior

Implementation detail: the KL term has a closed form — exact gradient can be obtained.
=> use sample-based gradients for the first term only. (fig from Stanford cs231n) 24

interpreting the decoder network

VAE

Data manifold for 2-d z

Use decoder network. Now sample z from prior!

DAV ANANNANANAANNNNSNSNSNNNNSN
QAIDIY N LELLLHL LW NN~
QUAVYIIN IRk L Lovvwwwew~~
QAVVUININLN ot BWVOVVY W~~~
QAVVHHLHINNBWVWWWBVIYIVVIY W W ——
QOO HINHININMOENPIBDIOVIY W - - —
QAOOMIMMNMMOoMDIID D W - ——
QOOQOMMMM MO W®O DD D e e —
OODOMMNMM MDD MDD D e e —
QODOMMOM MM MNP DD e e e —
QOMMEM NN O 0O O WO N om am e e —
QOMMMM M "0 0000 e o= —
QAN 0° (P 00000000 tn o~ o~ 0 0~ =
R s Lo N N Ea ol ol ol
NI N L L N al ko S S
A ddogorororororrraan~N
SAdadadddorrrrrrTTITIINN
SAddddgororrrrrdFFTITIRIRINN
SAdddTTTrTrTrrsrrr>rrPrr2™2R2RNN
S B0 e gl i~ <l ol ol ol ol ol ol S N NI N NN

< >

-

N

-
®
>

E;:vslz

N

Sample x|z from :E|z ~ N(/L$|z, Zm|z)

N
8
=
x
(@)
M)
O N
C
w,,w
L)
8 a,
(O]
()

<
Sample z from z ~ N(0, I)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

>

-

Vary z,

35

(fig from Stanford cs231n)

VAE: interpreting the decoder network
Diagonal prior on z X :’:’.3_".3 RrEr ey

- indepgndent Degree of smile Yy .‘11'1
latent variables \ - m-;“!“\"ﬁq-; |
Different as‘a?q‘qqg "
dimensions of z Vary z, ﬁﬁﬁﬂ’iﬂ"iiﬁ .
s B B S S AR
interpretable factors
of variation %%%%-iaqqs 3
\ e
Also good feature representation that _ :1:_'1\33_:\::\:_"\3?

< Head pose
Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014 Vary Z /

(fig from Stanford cs231n) 36

can be computed using q¢(z|x)!

Takeaways

ELBO is a very useful technique.
Tools change, but the principles live long!

How one combines NNs with probabilistic models — place NN for parameters of well-known
distributions (e.g. Gaussian)

Additional resources for VAEs:
* Blog 1: https://ermongroup.github.io/cs228-notes/extras/vae/

* Blog 2 (with code): https://jaan.io/what-is-variational-autoencoder-vae-tutorial/
 Tutorial paper: https://arxiv.org/pdf/1606.05908.pdf

* Kingma and Welling, “An Introduction to Variational Autoencoders”, Foundations and Trends in
Machine Learning, 20109.

37

https://ermongroup.github.io/cs228-notes/extras/vae/
https://jaan.io/what-is-variational-autoencoder-vae-tutorial/
https://arxiv.org/pdf/1606.05908.pdf

Next lecture (11/23)

* More application of GANs

* Reinforcement learning

* Assigned reading: https://jaan.io/what-is-variational-autoencoder-vae-tutorial/ by Jaan Altosaar

38

https://jaan.io/what-is-variational-autoencoder-vae-tutorial/

Generative adversarial network (GAN)

39

VAEs tend to generate blurry images

* Especially towards the corner.

 Why? (next slide)
. . . GAN paper: lan Goodfellow et al.,
* Generative adversarial networks (GANs): sharper images! “Generative Adversarial Nets”, NIPS 2014

* Cons: does not explicitly learn a distribution; specialized for sampling only.

VAE

GAN

fig. from Larsen et al., Autoencoding beyond pixels using a learned similarity metric, 2016
40

Why are VAEs generating blurry images?

* One hypothesis: the loss imposed is inherently mean squared error — minimizing this tends to learn
the ‘average’.

* Some says that it could be that we are using diagonal covariance.
e At least, it seems to be true for the vanilla VAE.

~

This paper
Truth MSE AL/MSE combined MSE loss
with the loss of GAN
to make it converge

faster.
/

|

Lotter et al., unsupervised learning of visual structure using predictive generative networks, 2016

Reddit discussion: https://www.reddit.com/r/MachineLearning/comments/9t712f/dwhy_are_images_created_by_gan_sharper_than/ 41

GAN: high-level structure

* Discriminator network: try to distinguish between real and fake images

* Generator network: try to fool the discriminator by generating real-looking images

Real images

—— Generator

\

Sample

Random input

Sample

Discriminator

SSO|
Jojeuiwinosiq

SSO|
lojelauan)

* Note: the discriminator network is distinguishing real and fake distributions, not individual examples

fig. from https://developers.google.com/machine-learning/gan/gan_structure

42

GANSs: optimization formulation

Solving a minimax game:

rrg{ign max [Ex~pdata 1041)901(3()‘ + E,.,log (1 —|Dg,, (Geg (Z))I)]

d

discriminator output € (0,1) for real datax discriminator output for fake data

6,: generator network parameters — counterfeiters .
+ would like D(G(2)) is close to 1 (real) for fake data

6,: discriminator network parameters — police officers
» would like D(x) close to 1 (real) and D(G(z)) close to 0

https://towardsdatascience.com/generative-adversarial-networks-gans-8fc303ad5fal

43

GANSs: optimization formulation

What is the inner maximization problem?

Simplifications

* Letp = Paata, 4 = Go, #u, the distribution of Gy (z) where z ~

* Let Dy, be able to represent any function

The inner maximization problem becomes

max |Ey_, InD(x) + Ey_qIn(1-D(x)) |

D:X—[0,1]

Optimal discriminator D: D(x) minimizes p(x) In D(x) + q(x) In (1 - D(x))

=> D(x) = _P® P(y = real image|x)

p(x)+q(x)
Optimal objective value:

Byl p(x) q(x)

n + [E,.,In
p() +q(x) 7T p) +qx)
JS(p, q): Jensen-Shannon divergence

= KL (p,

p+q

2

)esae

p+q

2

)—21n2=]5(p,q)—21n2

44

GANSs: optimization formulation

* With the simplification above:

r%;n JS (pdata» Gag #.U)

* Generator 6, wants to minimize the distance between Ggg #u and pgata

45

Training GANS

minmax |E,., . logDg (x) + E,.,log (1 — Dy, (Geg (Z)))]

How to solve the outer minimization problem?

It is of the form

minimize g(x), where g(x) = max f(x,y)
X y

Gradient descent! But how to calculate V,.g(x)?

Fact: if f is “nice enough”, then V, g(x) = V, f(x,y"(x)), where y*(x) = argmax,,f (x,y)

Implication: to calculate descent direction for 6, find corresponding optimal 6,

https://math.stackexchange.com/questions/373229/show-that-the-maximum-of-a-set-of-convex-functions-is-again-convex

Training GANs (cont’d)

Alternate between

 Maximization on discriminator

rré?lx [Ex~pdata logDg,(x) + E,.,log (1 — Dy, (Ggg (z)))]

* Often approximated by a few gradient descent iterations

* Gradient descent on generator

rrél’fqn [Ez~p(z) log (1 — Dy, (Ggg (Z)))]

47

Training GANS

Alternate between

 Maximization on discriminator

rréz;x [Ex~pdata log Dy, (x) + E,.,log (1 — De, (Gé’g (Z))) }

+Gradient-descent-on-generator => small gradients issue st

* Gradient ascent on an alternative objective

rrézlx E,-y llog Dy, (Geg (Z))]

at the beginning where the generator sucks.. ~os 02 0.4 |o.'e 0.8 i
D(G(=))

where the generator \INants tobe

Training GANS

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k£ = 1, the least expensive option, in our
experiments.

for number of training iterations do
for k steps do

e Sample minibatch of m noise samples {z(}), ... 2(™)} from noise prior p,(2).
e Sample minibatch of m examples {z("),... (™} from data generating distribution
pdata(ac)

e Update the discriminator by ascending its stochastic gradient:

Vo, 23 [log D (a) + 105 (1 - D (6 ()]

=1
end for
e Sample minibatch of m noise samples {z(!), ... z(™)} from noise prior p,(2).
e Update the generator by descesdiTig its stochastic gradient:
ascending
1 m
Vi, L les [L=2AEET)).
Sm . lan Goodfellow et al., “Generative
log(D(G(z™M))) Adversarial Nets”, NeurlPS 2014
end for

The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum 1n our experiments. 49

ative

rial Nets”, NeurlPS 2014

)

ing

-I@D
e "

emoriz

lan Goodfellow et al., “Gener
otm

Adversa

ing set (this shows that the network is n

earest data point from the traini

GAN samples

Architecture example

256
I—*—\l

>

512

Stride 2

100z

Stride 2 16

Project and reshape

CONV 2

Note: you will have to use transposed convolutions to do ‘upscaling’ G(2)

Figure 1: DCGAN generator used for LSUN scene modeling. A 100 dimensional uniform distribu-
tion Z is projected to a small spatial extent convolutional representation with many feature maps.
A series of four fractionally-strided convolutions (in some recent papers, these are wrongly called

deconvolutions) then convert this high level representation into a 64 x 64 pixel image. Notably, no
fully connected or pooling layers are used.

Radford et al., UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS, 2016.

51

G A N S a m p | e S lan Goodfellow et al., “Generative

Adversarial Nets”, NeurlPS 2014

(not using conv layers)

GAN with conv layers

Radford et al, ICLR 2016

53

GAN with conv layers

* Possible to interpolate between two samples. The learned representation is really useful!

|= B _*ts #: | '_'.

'.‘.4~I.L 'S ‘.b - 5 '] .m" . |)
TS Sl

7ol fy‘k . |
i n !' .-.s.x.ﬁ'

U”"&” "

l

Learned representation is meaningful

Radford et al, ICLR 2016

Smiling woman Neutral woman Neutral man

Samples
from the <
mode

Average Z
vectors, do
arithmetic

\

- -

* This means that there are ‘directions’ in the representation z that have particular meanings!

(slide from Stanford CS231n) >

Learned representation is meaningful

Glasses man No glasses man No glasses woman e

Woman with glasses

56

Miscellanea

* Training GANs are notoriously hard; it’s an active area of research.
* Generic tips: https://github.com/soumith/ganhacks

* The fact that we require significantly small dimensions forces the network to learn compact
representations.

* E.g., binary codes

* E.g., represent objects as ‘combinations’ of commonly observed patterns like smile face +
female face + glasses.

57

https://github.com/soumith/ganhacks

Summary

* Generative models for unsupervised learning

Trains an encoder explicit probabilistic model able to sample easily from D
Autoencoder Yes No Unclear
Variational autoencoder Yes Yes Yes

Generative adversarial networks No Yes Yes

58

Next lecture (11/28)

e Reinforcement learning: Markov Decision Processes (MDPs), Planning in MDPs

* Assigned reading: “Generative Adversarial Nets” (NeurlPS 2014) by Goodfellow et al

59

https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

