
CSC 580 Principles of Machine Learning

15 Unsupervised learning with NNs

Chicheng Zhang

Department of Computer Science

1

*slides credit: built upon CSC 580 Fall 2021 lecture slides by Kwang-Sung Jun

This lecture

• Autoencoder

• Variational auto-encoder

• Generative Adversarial Networks (GANs)

2

Unsupervised learning review

• Recall: unlabeled data.

• Q: what is the main goal of unsupervised learning?

• Represent data using a low degree of freedom

• Examples: clustering, PCA.

• Recall PCA can be used for
‘representation learning’ = learning useful
(and compact) features.

• NNs can be used to do generalizations of PCA.

3

(learned features = projected feature vector)

4

Autoencoder

Introductory example

• Suppose you have a number in {0,1,2,3,4,5,6,7}

• What would be a compact representation (say, for computers)?

• Q: how many bits do we need?

5

Observations from early days

Train a neural net by imposing
squared loss on all the output
units & backpropping.

Q: What do the hidden values
look like?

6p107, Tom Mitchell, “Machine Learning”

Autoencoder using deep networks

7
image from https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798

We can do this for any data!

How to use it:
- Encoder: for dimensionality reduction
- Decoder: generate new samples from the distribution by varying the input ‘code’

PCA as a linear neural network

• Recall PCA

8

linear = no activation

PCA as a linear NN

• k units in the hidden layer.

• The PCA can be represented as a neural network

(with constant bias added in each layer):

• Encoder: ℎ =

− 𝑣1 −
…

− 𝑣𝑘 −
⋅ 𝑥 +

−𝑣1
⊤𝜇
…

−𝑣𝑘
⊤𝜇

• Decoder: 𝑥 =
| |
𝑣1 … 𝑣𝑘
| |

⋅ ℎ +
|
𝜇
|

9

1 1

Autoencoder using deep networks

10
image from https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798

We can do this for any data!

What about images?

Training autoencoders

• Given:

• data 𝑥1, … , 𝑥𝑛 ∈ ℝ𝑑,

• Embedding dimension 𝑘 (𝑘 ≪ 𝑑)

• Goal: obtain

• Encoder network 𝑓𝜃: ℝ
𝑑 → ℝ𝑘

• Decoder network 𝑔𝜙: ℝ
𝑘 → ℝ𝑑

• Such that for every 𝑖, 𝑥𝑖 ≈ 𝑔𝜙(𝑓𝜃(𝑥𝑖))

• Most commonly used formulation (can be straightforwardly trained by gradient-based methods):

minimize𝜃,𝜙 σ𝑖=1
𝑛 𝑥𝑖 − 𝑔𝜙 𝑓𝜃 𝑥𝑖

2

11Reconstruction error

Autoencoder for images

• Encoder: conv-conv-pool-conv-conv-pool-…,

• Decoder: conv-conv-pool-…?? It will reduce the spatial dimension rather than increasing it.

• How to do the opposite of pooling (or conv with stride length >= 2)?

12

Following slides largely based on Stanford cs231n https://youtu.be/nDPWywWRIRo?t=1109

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture11.pdf

“Un”pooling

13(fig. from Stanford cs231n)

Max unpooling

14(fig from Stanford cs231n)

The network must be symmetric!

A smarter way (recommended): Transposed convolution

• Other names: upconvolution, fractionally strided convolution, backward strided convolution,
deconvolution (don’t use this name)

• Recall: 3 x 3 convolution with stride 2 pad 1.

15(fig from Stanford cs231n)

Transposed convolution

16(fig from Stanford cs231n)

Disclaimer: this is not the inverse of convolution!
Rather, it’s just a variation of the convolution.

1D transposed convolution

17(fig from Stanford cs231n)

1D transposed convolution: matrix form

18(fig from Stanford cs231n)

Next lecture (11/21)

• Variational autoencoders; Generative Adversarial Networks (GANs)

• Assigned reading this week:

• Stanford CS231n (currently offered by Fei-Fei Li, Jiajun Wu, and Ruohan Gao): notes on
Convolutional Networks

19

http://cs231n.github.io/convolutional-networks

Generative networks

• Popular method for learning distributions

• Input: 𝑥1, … , 𝑥𝑛 ∼ 𝐷 on ℝ𝑑, some base distribution 𝜇 (e.g. uniform, standard Gaussian)

• Goal: learn network 𝑓𝜃: ℝ
𝑘 → ℝ𝑑, such that 𝑓𝜃#𝜇 ≈ 𝐷 (usually 𝑘 ≪ 𝑑)

• 𝑓𝜃#𝜇: the distribution of 𝑓𝜃 𝑧 when 𝑧 ∼ 𝜇

“Push-forward measure”

• 𝑓𝜃 gives a low-degree-of-freedom representation of 𝐷

• Many applications, e.g. Digital art, Image denoising, Privacy-Preserving Synthetic Data, ..

• We will see two methods to train such networks: VAE and GAN

20
https://openai.com/blog/generative-models/

https://www.cylab.cmu.edu/_files/documents/2020-partners-conference-files/4-wu.pdf

Generative network: a simple example

• E.g. 𝑑 = 𝑘 = 1

• 𝑝𝐷 𝑥 ∝
1

𝑥
; 𝜇 = uniform([0,1])

=> set 𝑓𝜃(𝑧) = 𝑧2 ensures that 𝑓𝜃#𝜇 = 𝐷

21https://mjt.cs.illinois.edu/ml/slides-gn-1.pdf

22

Variational autoencoder

Variational autoencoder (VAE)

• Generative model counterpart of autoencoder. Also, a good example of using deep learning for probabilistic
models.

23

• Given: 𝑝(𝑧) (e.g. standard Gaussian), data 𝑥1, … , 𝑥𝑛 ∼ 𝐷

• Goal: build a network 𝜃 representing 𝑝(𝑥|𝑧), so that

𝑝𝜃 𝑥 = ∫ 𝑝𝜃 𝑥, 𝑧 𝑑𝑧 = ∫ 𝑝𝜃 𝑥|𝑧 𝑝(𝑧) 𝑑𝑧

matches 𝐷 as well as possible

• How do we model 𝑝𝜃(𝑥|𝑧) using a neural network?

Modeling conditional distribution using neural networks

• Assume 𝑝(𝑥|𝑧) has a specific form 𝑥 | 𝑧~𝑁(𝜇𝑥|𝑧, Σ𝑥|𝑧), where Σ𝑥|𝑧 is diagonal

• Use neural network (with weight 𝜃) to model the parameters of the distribution

• It’s now easy to sample from 𝑝𝜃(𝑥)!

• Draw 𝑧 ∼ 𝑝(𝑧)

• Draw 𝑥 ∼ 𝑝𝜃 𝑥 𝑧 :

• Use network 𝜃 to compute 𝜇𝑥|𝑧, Σ𝑥|𝑧
• Draw 𝜖 ∼ N(0, 𝐼𝑑)

• Compute 𝑥𝑖 = 𝜇𝑥|𝑧 𝑖
+ Σ𝑥|𝑧 𝑖𝑖

𝜖𝑖

24(fig from Stanford cs231n)

Variational autoencoder (VAE)

• Recall: 𝑝𝜃 𝑥 = ∫ 𝑝𝜃 𝑥, 𝑧 𝑑𝑧 = ∫ 𝑝𝜃 𝑥|𝑧 𝑝(𝑧) 𝑑𝑧

• Q: How can we train the network?

• MLE: maximize𝜃 σ𝑖=1
𝑛 ln 𝑝𝜃 𝑥𝑖

• The issue:

• Naively calculating 𝑝𝜃 𝑥𝑖 is intractable

• It takes 3 tricks!

• evidence lower bound (ELBO)

• auxiliary network

• reparameterization trick

25(fig from Stanford cs231n)

Recall: EM as maximizing surrogate likelihood

26

KL-divergence properties
𝐾𝐿(𝑝| 𝑞 ≥ 0, for all p,q
𝐾𝐿(𝑞| 𝑞 = 0, for all q

KL divergence is an “asymmetric” distance measure

• Previously in EM: choose 𝑞 𝑧 = 𝑝(𝑧 ∣ 𝑥, 𝜃′)

• Due to computational intractability of 𝑝(𝑧 ∣ 𝑥, 𝜃′),
VAE does not choose 𝑞 this way

The first trick: maximizing ELBO instead

• log 𝑝(𝑥) = ∫ 𝑞 𝑧|𝑥 log
𝑝 𝑥,𝑧

𝑞 𝑧|𝑥
𝑑𝑧 + KL 𝑞 𝑧|𝑥 𝑝 𝑧 𝑥)

• ℒ(𝑝,𝑞) is called the evidence lower bound (ELBO)

• It is a lower bound of log-likelihood. Why?

• Key idea of VAE: Instead of maximize
𝜃

σ𝑖=1
𝑛 log 𝑝𝜃(𝑥𝑖), we perform

maximize
𝜃,𝑞

σ𝑖=1
𝑛 ℒ(𝑥𝑖 , 𝑝𝜃 , 𝑞)

where 𝑞 = 𝑞(𝑧 ∣ 𝑥) is chosen from a family of conditional distributions

• Why this works: when 𝑞 approximates 𝑝𝜃 𝑧 ∣ 𝑥 well, then ELBO also approximates likelihood well

27

(Just changed q(z) to q(z|x) from our previous derivation)

Side note: alternative form of ELBO

• log 𝑝(𝑥) = ∫ 𝑞 𝑧|𝑥 log
𝑝 𝑥,𝑧

𝑞 𝑧|𝑥
𝑑𝑧 + 𝐾𝐿 𝑞 𝑧|𝑥 𝑝 𝑧 𝑥)

• ℒ(𝑝,𝑞) is called the evidence lower bound (ELBO)

• ℒ 𝑝, 𝑞 = ∫ 𝑞 𝑧|𝑥 log
𝑝 𝑥,𝑧

𝑞 𝑧|𝑥
𝑑𝑧 = ∫ 𝑞 𝑧|𝑥 log 𝑝 𝑥 𝑧 𝑑𝑧 + ∫ 𝑞 𝑧|𝑥 log

𝑝 𝑧

𝑞 𝑧|𝑥
𝑑𝑧

= ∫ 𝑞 𝑧|𝑥 log 𝑝 𝑥 𝑧 𝑑𝑧 − KL 𝑞 𝑧 𝑥 𝑝 𝑧)

• Interpretation of maximizing ELBO over 𝑝, 𝑞:

• Maximize “consistency” between 𝑝 and 𝑞: 𝑝 is MLE over data drawn from 𝑞

• keep 𝑞 𝑧 𝑥 not too far from the prior 𝑝 𝑧

28

Just changed q(z) to q(z|x) from our previous derivation.

The second trick: auxiliary network

• Note: the inequality works for any 𝑞(𝑧|𝑥) (Q: which one is a good one?)

• Idea: build a neural network (with weight 𝜙) to model 𝑞(𝑧|𝑥) – denote it by 𝑞𝜙(𝑧|𝑥)

• We didn’t intend it, but it now looks like the autoencoder!

29(fig from Stanford cs231n)

Training

• Goal: maximize
𝜃,𝜙

σ𝑥 ∫ 𝑞𝜙 𝑧|𝑥 log 𝑝𝜃 𝑥 𝑧 𝑑𝑧 − 𝐾𝐿 𝑞𝜙 𝑧 𝑥 𝑝 𝑧)

• How to train? Gradient ascent on both 𝜃 and 𝜙!

• The gradient for 𝜃:

30

Rewrite the ELBO objective:

Exchange gradient with
expectation (integration):

Training

31

Q: Can we exchange the gradient operator and the expectation operator?

The gradient for 𝜙:

No: change in 𝜙 affects both the integrand and the underlying distribution!

The third trick: reparameterization for gradient calculations

• key observation:

• then, a sample 𝑧 ∼ 𝑞𝜙(⋅ ∣ 𝑥) can be written as

𝑥𝑖 = 𝜇𝑥|𝑧 𝑖
+ Σ𝑥|𝑧 𝑖𝑖

𝜖𝑖, where 𝜖𝑖 ∼ N(0,1), 𝑖 = 1,… , 𝑑

• let’s use the notation 𝑧(𝜙, 𝑥, {𝜖𝑖}) to make the dependence explicit. then,

• sample 𝜖𝑖 , compute the gradient, and descend!

32

Suppose this is a diagonal matrix

The reparameterization trick

• A general way to calculate unbiased estimates of ∇𝜙𝔼𝑧∼𝑞𝜙𝑓(𝑧)

• “Pushes the randomness of 𝑧 into 𝜖”

• Tutorial - What is a variational autoencoder? – Jaan Altosaar

• It’s about the way we define the distribution 𝑞𝜙(𝑧 ∣ 𝑥) through the normal distribution.

• Let the network output the parameters of the normal distribution, so we can easily
reparameterize it – disentangle the network output and the source of randomness!

• More generally, the same technique can be applied to any exponential family distribution.

• Otherwise, computing the derivative is a pain (and researchers tried it and then found that it has a
very high variance in the stochastic gradient..)

33

https://jaan.io/what-is-variational-autoencoder-vae-tutorial/

Training VAE Summary

34(fig from Stanford cs231n)

Implementation detail: the KL term has a closed form – exact gradient can be obtained.
=> use sample-based gradients for the first term only.

• For each 𝑥, encoder forward pass, get (𝜇𝑧|𝑥, Σ𝑧|𝑥),

sample {𝜖𝑖}, compute 𝑧, decoder forward pass, get
(𝜇𝑥|𝑧, Σ𝑥|𝑧), compute the ELBO.

• Then, compute the gradients for both encoder 𝜙
and decoder 𝜃, perform gradient ascent.

VAE: interpreting the decoder network

35(fig from Stanford cs231n)

VAE: interpreting the decoder network

36(fig from Stanford cs231n)

Takeaways

• ELBO is a very useful technique.

• Tools change, but the principles live long!

• How one combines NNs with probabilistic models – place NN for parameters of well-known
distributions (e.g. Gaussian)

• Additional resources for VAEs:

• Blog 1: https://ermongroup.github.io/cs228-notes/extras/vae/

• Blog 2 (with code): https://jaan.io/what-is-variational-autoencoder-vae-tutorial/

• Tutorial paper: https://arxiv.org/pdf/1606.05908.pdf

• Kingma and Welling, “An Introduction to Variational Autoencoders”, Foundations and Trends in
Machine Learning, 2019.

37

https://ermongroup.github.io/cs228-notes/extras/vae/
https://jaan.io/what-is-variational-autoencoder-vae-tutorial/
https://arxiv.org/pdf/1606.05908.pdf

Next lecture (11/23)

• More application of GANs

• Reinforcement learning

• Assigned reading: https://jaan.io/what-is-variational-autoencoder-vae-tutorial/ by Jaan Altosaar

38

https://jaan.io/what-is-variational-autoencoder-vae-tutorial/

39

Generative adversarial network (GAN)

VAEs tend to generate blurry images

• Especially towards the corner.

• Why? (next slide)

• Generative adversarial networks (GANs): sharper images!

• Cons: does not explicitly learn a distribution; specialized for sampling only.

40
fig. from Larsen et al., Autoencoding beyond pixels using a learned similarity metric, 2016

GAN paper: Ian Goodfellow et al.,

“Generative Adversarial Nets”, NIPS 2014

Why are VAEs generating blurry images?

• One hypothesis: the loss imposed is inherently mean squared error – minimizing this tends to learn
the ‘average’.

• Some says that it could be that we are using diagonal covariance.

• At least, it seems to be true for the vanilla VAE.

41Reddit discussion: https://www.reddit.com/r/MachineLearning/comments/9t712f/dwhy_are_images_created_by_gan_sharper_than/

Lotter et al., unsupervised learning of visual structure using predictive generative networks, 2016

This paper
combined MSE loss
with the loss of GAN
to make it converge
faster.

GAN: high-level structure

• Discriminator network: try to distinguish between real and fake images

• Generator network: try to fool the discriminator by generating real-looking images

• Note: the discriminator network is distinguishing real and fake distributions, not individual examples

42fig. from https://developers.google.com/machine-learning/gan/gan_structure

GANs: optimization formulation

• Solving a minimax game:

• min
𝜃𝑔

max
𝜃𝑑

𝔼𝑥~𝑝𝑑𝑎𝑡𝑎 log𝐷𝜃𝑑 𝑥 + 𝔼𝑧~𝜇 log 1 − 𝐷𝜃𝑑 𝐺𝜃𝑔 𝑧

• 𝜃𝑔: generator network parameters – counterfeiters

• would like 𝐷(𝐺 𝑧) is close to 1 (real) for fake data

• 𝜃𝑑: discriminator network parameters – police officers

• would like 𝐷(𝑥) close to 1 (real) and 𝐷(𝐺 𝑧) close to 0

43

discriminator output ∈ (0,1) for real data x discriminator output for fake data

https://towardsdatascience.com/generative-adversarial-networks-gans-8fc303ad5fa1

GANs: optimization formulation
• What is the inner maximization problem?

• Simplifications

• Let 𝑝 = 𝑝𝑑𝑎𝑡𝑎, 𝑞 = 𝐺𝜃𝑔#𝜇, the distribution of 𝐺𝜃𝑔 𝑧 where 𝑧 ∼ 𝜇

• Let 𝐷𝜃𝑑 be able to represent any function

• The inner maximization problem becomes

max
𝐷:𝒳→[0,1]

𝔼𝑥~𝑝 ln𝐷 𝑥 + 𝔼𝑥∼𝑞 ln 1 − 𝐷 𝑥

• Optimal discriminator 𝐷: 𝐷 𝑥 minimizes 𝑝 𝑥 ln 𝐷 𝑥 + 𝑞 𝑥 ln 1 − 𝐷 𝑥

=> 𝐷 𝑥 =
𝑝(𝑥)

𝑝 𝑥 +𝑞(𝑥)
= 𝑃(𝑦 = real image|𝑥)

• Optimal objective value:

𝔼𝑥~𝑝 ln
𝑝(𝑥)

𝑝 𝑥 + 𝑞(𝑥)
+ 𝔼𝑥∼𝑞 ln

𝑞(𝑥)

𝑝 𝑥 + 𝑞(𝑥)
= 𝐾𝐿 𝑝,

𝑝 + 𝑞

2
+ 𝐾𝐿 𝑞,

𝑝 + 𝑞

2
− 2 ln 2 = 𝐽𝑆 𝑝, 𝑞 − 2 ln 2

• 𝐽𝑆 𝑝, 𝑞 : Jensen-Shannon divergence

44

GANs: optimization formulation

• With the simplification above:

min
𝜃𝑔

𝐽𝑆 𝑝𝑑𝑎𝑡𝑎 , 𝐺𝜃𝑔#𝜇

• Generator 𝜃𝑔 wants to minimize the distance between 𝐺𝜃𝑔#𝜇 and 𝑝𝑑𝑎𝑡𝑎

45

Training GANs

min
𝜃𝑔

max
𝜃𝑑

𝔼𝑥~𝑝𝑑𝑎𝑡𝑎 log𝐷𝜃𝑑 𝑥 + 𝔼𝑧~𝜇 log 1 − 𝐷𝜃𝑑 𝐺𝜃𝑔 𝑧

• How to solve the outer minimization problem?

• It is of the form

minimize
𝑥

𝑔(𝑥), where 𝑔 𝑥 = max
𝑦

𝑓(𝑥, 𝑦)

• Gradient descent! But how to calculate ∇𝑥𝑔 𝑥 ?

• Fact: if 𝑓 is “nice enough”, then ∇𝑥𝑔 𝑥 = ∇𝑥𝑓 𝑥, 𝑦∗(𝑥) , where 𝑦∗ 𝑥 = argmax𝑦𝑓(𝑥, 𝑦)

• Implication: to calculate descent direction for 𝜃𝑔, find corresponding optimal 𝜃𝑑

46https://math.stackexchange.com/questions/373229/show-that-the-maximum-of-a-set-of-convex-functions-is-again-convex

Training GANs (cont’d)

Alternate between

• Maximization on discriminator

max
𝜃𝑑

𝔼𝑥~𝑝𝑑𝑎𝑡𝑎 log𝐷𝜃𝑑 𝑥 + 𝔼𝑧~𝜇 log 1 − 𝐷𝜃𝑑 𝐺𝜃𝑔 𝑧

• Often approximated by a few gradient descent iterations

• Gradient descent on generator

min
𝜃𝑔

𝔼𝑧~𝑝 𝑧 log 1 − 𝐷𝜃𝑑 𝐺𝜃𝑔 𝑧

47

Training GANs

min
𝜃𝑔

max
𝜃𝑑

𝔼𝑥~𝑝𝑑𝑎𝑡𝑎 log𝐷𝜃𝑑 𝑥 + 𝔼𝑧~𝜇 log 1 − 𝐷𝜃𝑑 𝐺𝜃𝑔 𝑧

Alternate between

• Maximization on discriminator

max
𝜃𝑑

𝔼𝑥~𝑝𝑑𝑎𝑡𝑎 log𝐷𝜃𝑑 𝑥 + 𝔼𝑧~𝜇 log 1 − 𝐷𝜃𝑑 𝐺𝜃𝑔 𝑧

• Gradient descent on generator => small gradients issue

• Gradient ascent on an alternative objective

max
𝜃𝑔

𝔼𝑧~𝜇 log𝐷𝜃𝑑 𝐺𝜃𝑔 𝑧

48

at the beginning where the generator sucks..

where the generator wants to be

Training GANs

49

Ian Goodfellow et al., “Generative

Adversarial Nets”, NeurIPS 2014

ascending

log(𝐷(𝐺(𝑧(𝑖))))

GAN samples

50

nearest data point from the training set (this shows that the network is not memorizing)

Ian Goodfellow et al., “Generative

Adversarial Nets”, NeurIPS 2014

Architecture example
• Radford et al., UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS, 2016.

51

Note: you will have to use transposed convolutions to do ‘upscaling’

GAN samples

52

(not using conv layers)

Ian Goodfellow et al., “Generative

Adversarial Nets”, NeurIPS 2014

GAN with conv layers

53Radford et al, ICLR 2016

GAN with conv layers

• Possible to interpolate between two samples. The learned representation is really useful!

54

Learned representation is meaningful

• This means that there are ‘directions’ in the representation z that have particular meanings!
55(slide from Stanford CS231n)

Learned representation is meaningful

56

Miscellanea

• Training GANs are notoriously hard; it’s an active area of research.

• Generic tips: https://github.com/soumith/ganhacks

• The fact that we require significantly small dimensions forces the network to learn compact
representations.

• E.g., binary codes

• E.g., represent objects as ‘combinations’ of commonly observed patterns like smile face +
female face + glasses.

57

https://github.com/soumith/ganhacks

Summary

• Generative models for unsupervised learning

58

Trains an encoder explicit probabilistic model able to sample easily from 𝐷

Autoencoder

Variational autoencoder

Generative adversarial networks

Yes No Unclear

Yes Yes Yes

No Yes Yes

Next lecture (11/28)

• Reinforcement learning: Markov Decision Processes (MDPs), Planning in MDPs

• Assigned reading: “Generative Adversarial Nets” (NeurIPS 2014) by Goodfellow et al

59

https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

