
CSC 580 Principles of Machine Learning

14 Convolutional neural networks (CNN)

Chicheng Zhang

Department of Computer Science

1

*slides credit: built upon CSC 580 Fall 2021 lecture slides by Kwang-Sung Jun

NNs for images

• Fully-connected (FC) layers do not scale well to images (width x height x #channels)

• Need for smaller number of parameters

• Note: FCs can learn (pattern, location) combinations in images

• The learned patterns do not generalize to different spatial locations.

• Can we capture local patterns (e.g. existence of a wheel in an image) regardless of the spatial
location in the image and leverage them for better classification?

• low level: edge of some orientation, a patch of some color

• high level: shape of a wheel

• i.e. can we learn a group of neurons that detect patterns at all locations?

• Encodes inductive bias

2

𝑎(𝑙) 𝑎(𝑙+1)

Convolutional neural networks (CNN)

• A.K.A. ConvNet architecture

• A set of neural network architecture that consists of

• convolutional layers

• pooling layers

• fully-connected (FC) layers

3(Stanford CS231n)

Convolution: some intuition

• For 𝑓, 𝑔:ℝ → ℝ, define their convolution as:

𝑓 ∗ 𝑔 𝑥 = ∫ 𝑓 𝑥 − 𝑦 𝑔(𝑦)d𝑦

• Important special case: 𝑔 is a function with “narrow support”, say 𝑔 𝑦 = 0 outside [−1,1],

Then 𝑓 ∗ 𝑔 𝑥 = ∫−1
−1
𝑓 𝑥 − 𝑦 𝑔(𝑦)d𝑦

• Informally, for every 𝑥, 𝑓 ∗ 𝑔 (𝑥) is the correlation of

• 𝑓 𝑧 : 𝑧 ∈ [𝑥 − 1, 𝑥 + 1]

• 𝑔 𝑧 : 𝑧 ∈ [−1,+1]

• Special case: 𝑔 ≥ 0 is a smooth “weighting function”

=> 𝑓 ∗ 𝑔 is a “smoothing” of 𝑓

4

Convolution for single-channel images

• Consider one filter with weights {𝑤𝑖,𝑗} with size F x F

• For every F x F region of the image, perform inner product (= element wise product, then sum them all)

• Q: given a w x h image, after convolution with a F x F filter, what is the size of the resulting image?

• Terminologies: filter size, receptive field size, kernel.

5Vincent Dumoulin, Francesco Visin - A guide to convolution arithmetic for deep learning

https://arxiv.org/abs/1603.07285

Convolutional layer for multi-channel images
• Input: w (width) x h (height) x c (#channels)

• E.g. 32 x 32 x 3

• 3 channels: R, G, and B

• A convolutional filter on such image is of shape F x F x c

• Only spatial structure in the first two dimensions

• Denoted by {𝑤𝑖,𝑗,𝑘}

6image from Stanford CS231n

Convolutional layer: visual explanation

• Consider one filter with weights {𝑤𝑖,𝑗,𝑘} with 5 x 5 x 3

• Imagine a sliding 3d window.

• Convolution:

• For every 5 x 5 region of the image, perform inner product (= element wise product, then sum them all)

• Then apply the activation function (e.g., ReLU)

• Results in 28 x 28 x 1 – called activation map.

• Now, we can do 𝐾 of these filters but with different weights {𝑤𝑖,𝑗,𝑘
(ℓ)

} for ℓ ∈ [𝐾] => output is 28 x 28 x 𝐾

7

filter weights

(image from https://www.quora.com/Why-do-we-use-convolutional-layers)

(depth=1 here)

(detail: usually, add a bias term as well)

Convolutional Layer: Why is it useful?

• Why is it useful?

• The set of weights represent a pattern (i.e., diagonal edge). The activation map represents ‘where the
pattern has occurred’.

8image from Stanford CS231n

Convolutional layers beyond the first layer

• Generalization: conv layer as the 2nd layer or more

• Input volume (3d object with size w x h x d):

• the d (called depth) is not necessarily 3

• Output volume: size w’ x h’ x d’, where d’ is the number of filters at the current layer.

• Interpretation: patterns over the patterns.

• Each filter now convolves and combines d’ activation maps for each spatial location.

• e.g., combinations of particular edges and textures

9

Convolutional layer: More details

• Stride length S

• Skip input regions; Move the sliding window of a filter not by 1 but by S.

• E.g., S=2 means skipping every other 5 by 5 region.

• Zero-padding P: add P number of artificial pixels with value 0 around the input image on both sides

• To ensure the spatial dimension is maintained (otherwise, patterns at the corners are not detected well)

• If we use P=1, then the activation map will be 30 x 30, not 28 x 28 in our example!

10
image from https://medium.com/@ayeshmanthaperera/what-is-padding-in-cnns-71b21fb0dd7

Convolutional layer: More details

• Stride length S

• Skip input regions; Move the sliding window of a filter not by 1 but by S.

• E.g., S=2 means skipping every other 5 by 5 region.

• Zero-padding P: add P number of artificial pixels with value 0 around the input image.

• To ensure the spatial dimension is maintained (otherwise, patterns at the corners are not detected well)

• If we use P=2, then the activation map will be 32 by 32 not 28 by 28 in our example!

• Rules (same goes for height)

• W: input volume width, F: filter width

• The output width K = floor((W – F + 2P)/S) + 1

• E.g., W=32, F=5, P=0, S=1 => K = 28

• E.g., W=32, F=5, P=2, S=1 => K = 32

11

(usually, the filter has the same width and height)

Strides and padding: animations

12Vincent Dumoulin, Francesco Visin - A guide to convolution arithmetic for deep learning

Strides only Padding only Strides + Padding

https://arxiv.org/abs/1603.07285

Convolutional layer: Summary

• Input: 𝑊1 × 𝐻1 × 𝐷1 (width, height, depth)

• Hyperparameters: # of filters 𝐾, filter size (=width=height) 𝐹, stride 𝑆, zero-padding 𝑃

• Output: 𝑊2 × 𝐻2 × 𝐷2

• 𝑊2 =
𝑊1−𝐹+2𝑃

𝑆
+ 1, 𝐻2 =

𝐻1−𝐹+2𝑃

𝑆
+ 1, 𝐷2 = 𝐾

• How many parameters? (# of weights + # of biases)

• Generic recommendation: F=3, S=1, P=1.

• More terminology: depth slice (W by H by 1), depth column (1 by 1 by D)

13

Comparison: FC vs Conv
• Conv layer allows parsimonious representations:

• Inter-layer connections are local
• parameter is shared across spatial locations.

• In AlexNet, input is 227 by 227 by 3, and the first conv layer output is 55 by 55 by 96 (96 filters)
• Each filter has 11*11*3 weights with 1 bias => 364 parameters
• 364*96 = 34,944 total parameters are used to compute the output 55*55*96 = 290,400

• What if we didn’t do parameter sharing? I.e., for each region of image, use independent filter parameter w.
• roughly, 290,400 * 364 = 105,705,600

• What if we use FC to compute the same number of outputs? (the parsimony of local connections)
• 230,187 * 290,400 = 66,846,304,800 parameters

• Conv layer can be seen as imposing inductive bias specialized for images

• This also prevents overfitting: idiosyncratic pattern that appear in few images are not picked up while
training! => useless filters are ‘squeezed out’ or ‘crowded out’ by useful filters.

14

Pooling layer
• The role: Summarize the input and scale down the spatial size.

• has the effect of routing the region with the most activation.

• Recall depth slice: take the matrix at a particular depth.

• Max pooling: run a particular filter that computes maximum, for each depth slice.

• Variation: average pooling (but not popular).

• Recommended: Filter size F=2, stride length S=2. (F=3, S=2 is also commonly use – overlapping pooling).

• Note: There are no parameters for this layer!
15figure from Stanford CS231n

Typical architectural patterns in CNN

16

Seeing what happens in CNN

• https://yosinski.com/deepvis#toolbox

17

https://yosinski.com/deepvis#toolbox

18

CNN examples

LeNet-5

• Proposed in “Gradient-based learning applied to document recognition” , by Yann LeCun, Leon
Bottou, Yoshua Bengio and Patrick Haffner, in Proceedings of the IEEE, 1998

• Apply convolution on 2D images (MNIST) and use backpropagation

• Structure: 2 convolutional layers (with pooling) + 3 fully connected layers

• Input size: 32x32x1

• Convolution kernel size: 5x5

• Pooling: 2x2

19

LeNet-5

20
“Gradient-based learning applied to document recognition” , by Yann LeCun, Leon Bottou, Yoshua Bengio and Patrick Haffner, in Proceedings of the IEEE, 1998

(depth 1)

5 by 5 filters
K=6
stride 1

2x2 pooling
stride 2

5 by 5 by 6 filters
K=16
stride 1

2x2 pooling
stride 2

AlexNet (2012)

• Won the ImageNet competition with top-5 test error rate of 16.4% (second place was 26.2%).

• Almost just an extension of LeNet-5. But, uses ReLU for the first time.

21
Krizhevsky, Sutskever, and Hinton, ImageNet Classification with Deep Convolutional Neural Networks, 2012.

(1000 classes)

https://en.wikipedia.org/wiki/AlexNet

VGGNet (2014): 7.3% error on ImageNet

22

• Mimic large convolutional filters with multiple small (3x3) convolutional filters
• Every time it halves the spatial size, double the # of filters

slide from Stanford CS231n[Simonyan and Zisserman, 2014]

ResNet (2016): 3.5% error on ImageNet

• Proposed in “Deep residual learning for image recognition” by He, Kaiming, Xiangyu Zhang,
Shaoqing Ren, and Jian Sun. In Proceedings of the IEEE conference on computer vision and pattern
recognition,. 2016.

• Apply very deep networks with repeated residual blocks.

• Structure: simply stacking residual blocks, but the network is very deep.

• Let’s see the motivation.

23

24
http://image-net.org/challenges/talks/ilsvrc2015_deep_residual_learning_kaiminghe.pdf

Deep nets seem to suffer

25http://image-net.org/challenges/talks/ilsvrc2015_deep_residual_learning_kaiminghe.pdf

26

(slides from Kaiming He)

http://image-net.org/challenges/talks/ilsvrc2015_deep_residual_learning_kaiminghe.pdf

Skip connections for better optimization

• Skip connections

• 𝐹(𝑥) encodes residual representations, which has previously
been explored in early works

• When backprop’ing, by the chain rule, gradients will ‘flow’
directly to the previous layer.

• Recall: when the computation graph splits, the gradient is a
summation of the gradients of the branches.

• In contrast, plain CNNs suffer from vanishing gradient
problem

27

http://image-net.org/challenges/talks/ilsvrc2015_deep_residual_learning_kaiminghe.pdf

ResNet

• VGG-style scheme: halve the special size, double the # of
filters

• Max pool appears only once.

• Use conv layer with stride 2 occasionally to reduce the spatial
dimension => called “bottleneck” blocks.

28http://image-net.org/challenges/talks/ilsvrc2015_deep_residual_learning_kaiminghe.pdf

ResNet in PyTorch

• Torchvision implementation:
https://pytorch.org/vision/0.8/_modules/torchvision/models/resnet.html

29

https://pytorch.org/vision/0.8/_modules/torchvision/models/resnet.html

ImageNet nowadays

• Top-5 accuracy is boring

• SoTA top-1 accuracy is around 90.88%

30
https://paperswithcode.com/sota/image-classification-on-imagenet

Summary

• Convolutional neural networks (CNNs): convolution layers, pooling layers

• Some representative CNN architectures

31

AlexNet (2012)

• Won the ImageNet competition with top-5 test error rate of 15.3% (second place was 26.2%).

• Almost just an extension of LeNet-5. But, uses ReLU for the first time.

32
Krizhevsky, Sutskever, and Hinton, ImageNet Classification with Deep Convolutional Neural Networks, 2012.

96 filters of 11x11, stride 4
conv-pool-norm-conv-pool-norm-conv-conv-conv-pool-fc-fc-fc

(norm: not popular these days)

(1000 classes)

• Consider one filter with weights {𝑤𝑖,𝑗,𝑘} with 5 by 5 by 3

• For every 5 by 5 region of the image, perform inner product (= element wise product, then sum them all)

• This is called convolution.

• then, apply the activation function (e.g., ReLU)

• Results in 28 by 28 matrix – called activation map.

• Now, we can do 𝐾 of these filters but with a different weight. {𝑤𝑖,𝑗,𝑘
(ℓ)

} for ℓ ∈ [𝐾] . => output is 28 x 28 x 𝐾

• Terminologies: filter size, receptive field size, kernel.

33

Comparison: FC vs Conv

• A unique feature of conv layer: parameter is shared across spatial locations.

• In AlexNet, input is 227 by 227 by 3, and the first conv layer output is 55 by 55 by 96 (96 filters)

• Each filter has 11*11*3 weights with 1 bias => 364 parameters

• 364*96 = 34,944 total parameters are used to compute the output 55*55*96 = 290,400

• What if we didn’t do parameter sharing? I.e., for each region of image, use independent filter parameter w.

• roughly, 290,400 * 364 = 105,705,600

• What if we use FC to compute the same number of outputs?

• 230,187 * 290,400 = 66,846,304,800 parameters

• Conv layer can be seen as imposing inductive bias specialized for images

• This also prevents overfitting: idiosyncratic pattern that appear in few images are not picked up while
training! => useless filters are ‘squeezed out’ or ‘crowded out’ by useful filters.

34

