CSC 580 Principles of Machine Learning

14 Convolutional neural networks (CNN)

Chicheng Zhang
Department of Computer Science

NNs for images

- Fully-connected (FC) layers do not scale well to images (width x height x \#channels) $a^{(l)}$
- Need for smaller number of parameters
- Note: FCs can learn (pattern, location) combinations in images
- The learned patterns do not generalize to different spatial locations.
- Can we capture local patterns (e.g. existence of a wheel in an image) regardless of the spatial location in the image and leverage them for better classification?
- Iow level: edge of some orientation, a patch of some color
- high level: shape of a wheel
- i.e. can we learn a group of neurons that detect patterns at all locations?
- Encodes inductive bias

Convolutional neural networks (CNN)

- A.K.A. ConvNet architecture
- A set of neural network architecture that consists of
- convolutional layers
- pooling layers
- fully-connected (FC) layers

Convolution: some intuition

- For $f, g: \mathbb{R} \rightarrow \mathbb{R}$, define their convolution as:

$$
(f * g)(x)=\int f(x-y) g(y) \mathrm{d} y
$$

- Important special case: g is a function with "narrow support", say $g(y)=0$ outside $[-1,1]$,

$$
\text { Then }(f * g)(x)=\int_{-1}^{-1} f(x-y) g(y) \mathrm{d} y
$$

- Informally, for every $x,(f * g)(x)$ is the correlation of
- $f(z): z \in[x-1, x+1]$
- $g(z): z \in[-1,+1]$
- Special case: $g \geq 0$ is a smooth "weighting function" => $f * g$ is a "smoothing" of f

Convolution for single-channel images

- Consider one filter with weights $\left\{w_{i, j}\right\}$ with size $\mathrm{F} \times \mathrm{F}$
- For every F x F region of the image, perform inner product (= element wise product, then sum them all)
- Q: given a w xh image, after convolution with a $\mathrm{F} \times \mathrm{F}$ filter, what is the size of the resulting image?
- Terminologies: filter size, receptive field size, kernel.

Convolutional layer for multi-channel images

- Input: w (width) x h (height) x c (\#channels)
- E.g. $32 \times 32 \times 3$
- 3 channels: R, G, and B
- A convolutional filter on such image is of shape F x F x c
- Only spatial structure in the first two dimensions
- Denoted by $\left\{w_{i, j, k}\right\}$

Convolutional layer: visual explanation

- Consider one filter with weights $\left\{w_{i, j, k}\right\}$ with $5 \times 5 \times 3$
- Imagine a sliding 3d window.

- Convolution:
- For every 5×5 region of the image, perform inner product (= element wise product, then sum them all)
- Then apply the activation function (e.g., ReLU)
- Results in $28 \times 28 \times 1$ - called activation map.
- Now, we can do K of these filters but with different weights $\left\{w_{i, j, k}^{(\ell)}\right\}$ for $\ell \in[K]=>$ output is $28 \times 28 \times K$

Convolutional Layer: Why is it useful?

- Why is it useful?
- The set of weights represent a pattern (i.e., diagonal edge). The activation map represents 'where the pattern has occurred'.

Convolutional layers beyond the first layer

- Generalization: conv layer as the $2^{\text {nd }}$ layer or more
- Input volume (3d object with size $w \times h \times d)$:
- the d (called depth) is not necessarily 3
- Output volume: size $w^{\prime} \times h^{\prime} x d^{\prime}$, where d^{\prime} is the number of filters at the current layer.
- Interpretation: patterns over the patterns.
- Each filter now convolves and combines d' activation maps for each spatial location.

- e.g., combinations of particular edges and textures

Convolutional layer: More details

- Stride length S
- Skip input regions; Move the sliding window of a filter not by 1 but by S .
- E.g., $\mathrm{S}=2$ means skipping every other 5 by 5 region.

- Zero-padding P: add P number of artificial pixels with value 0 around the input image on both sides
- To ensure the spatial dimension is maintained (otherwise, patterns at the corners are not detected well)
- If we use $\mathrm{P}=1$, then the activation map will be 30×30, not 28×28 in our example!

Output			
0.5	0	0.25	0.25
0	1.25	0.5	0.5
0	0.5	0.75	1.5
0.5	0.25	1.25	1

outDim $=($ inpDim $) /$ strideDim

Convolutional layer: More details

- Stride length S
- Skip input regions; Move the sliding window of a filter not by 1 but by S .
- E.g., $\mathrm{S}=2$ means skipping every other 5 by 5 region.

- Zero-padding P: add P number of artificial pixels with value 0 around the input image.
- To ensure the spatial dimension is maintained (otherwise, patterns at the corners are not detected well)
- If we use $\mathrm{P}=2$, then the activation map will be 32 by 32 not 28 by 28 in our example!
- Rules (same goes for height)
- W: input volume width, F: filter width
(usually, the filter has the same width and height)
- The output width $K=$ floor $((W-F+2 P) / S)+1$
- E.g., $W=32, F=5, P=0, S=1 \quad K=28$
- E.g., $W=32, F=5, P=2, S=1 \quad K \quad K=32$

Strides and padding: animations

Strides only

Padding only

Strides + Padding

Convolutional layer: Summary

- Input: $W_{1} \times H_{1} \times D_{1} \quad$ (width, height, depth)
- Hyperparameters: \# of filters K, filter size (=width=height) F, stride S, zero-padding P
- Output: $W_{2} \times H_{2} \times D_{2}$
- $W_{2}=\left\lfloor\frac{W_{1}-F+2 P}{S}\right\rfloor+1, \quad H_{2}=\left\lfloor\frac{H_{1}-F+2 P}{S}\right\rfloor+1, \quad D_{2}=K$
- How many parameters? (\# of weights + \# of biases)
- Generic recommendation: $\mathrm{F}=3, \mathrm{~S}=1, \mathrm{P}=1$.

- More terminology: depth slice (W by H by 1), depth column (1 by 1 by D)

Comparison: FC vs Conv

- Conv layer allows parsimonious representations:
- Inter-layer connections are local
- parameter is shared across spatial locations.

- In AlexNet, input is 227 by 227 by 3, and the first conv layer output is 55 by 55 by 96 (96 filters)
- Each filter has 11*11*3 weights with 1 bias => 364 parameters
- $364 * 96=\underline{34,944}$ total parameters are used to compute the output $55 * 55 * 96=\underline{290,400}$
- What if we didn't do parameter sharing? I.e., for each region of image, use independent filter parameter w.
- roughly, 290,400 * $364=105,705,600$
- What if we use FC to compute the same number of outputs? (the parsimony of local connections)
- 230,187 * $290,400=66,846,304,800$ parameters
- Conv layer can be seen as imposing inductive bias specialized for images
- This also prevents overfitting: idiosyncratic pattern that appear in few images are not picked up while training! => useless filters are 'squeezed out' or 'crowded out' by useful filters.

Pooling layer

- The role: Summarize the input and scale down the spatial size.
- has the effect of routing the region with the most activation.
- Recall depth slice: take the matrix at a particular depth.
- Max pooling: run a particular filter that computes maximum, for each depth slice.

- Variation: average pooling (but not popular).
- Recommended: Filter size $F=2$, stride length $S=2$. ($F=3, S=2$ is also commonly use - overlapping pooling).
- Note: There are no parameters for this layer!

Typical architectural patterns in CNN

Seeing what happens in CNN

- https://yosinski.com/deepvis\#toolbox

CNN examples

LeNet-5

- Proposed in "Gradient-based learning applied to document recognition", by Yann LeCun, Leon Bottou, Yoshua Bengio and Patrick Haffner, in Proceedings of the IEEE, 1998
- Apply convolution on 2D images (MNIST) and use backpropagation
- Structure: 2 convolutional layers (with pooling) +3 fully connected layers
- Input size: $32 \times 32 \times 1$
- Convolution kernel size: 5x5
- Pooling: 2x2

LeNet-5

AlexNet (2012)

(1000 classes)

- Won the ImageNet competition with top-5 test error rate of 16.4% (second place was 26.2%).
- Almost just an extension of LeNet-5. But, uses ReLU for the first time.

LeNet	AlexNet
Image: 28 (height) $\times 28$ (width) $\times 1$ (channel)	Image: 224 (height) $\times 224$ (width) $\times 3$ (channels)
\downarrow	\downarrow
Convolution with 5×5 kernel +2 padding: $28 \times 28 \times 6$	Convolution with 11×11 kernel +4 stride: $54 \times 54 \times 96$
\checkmark sigmoid	\downarrow ReLu
Pool with 2×2 average kernel +2 stride: $14 \times 14 \times 6$	Pool with 3×3 max. kernel +2 stride: $26 \times 26 \times 96$
\downarrow	\downarrow
Convolution with 5×5 kernel (no pad): $10 \times 10 \times 16$	Convolution with 5×5 kernel +2 pad: $26 \times 26 \times 256$
\downarrow sigmoid	\downarrow ReLu
Pool with 2×2 average kernel+2 stride: $5 \times 5 \times 16$	Pool with 3×3 max.kernel+2stride: $12 \times 12 \times 256$
\downarrow flatten	\downarrow
Dense: 120 fully connected neurons	Convolution with 3×3 kernel +1 pad: $12 \times 12 \times 384$
\downarrow sigmoid	\downarrow ReLu
Dense: 84 fully connected neurons	Convolution with 3×3 kernel +1 pad: $12 \times 12 \times 384$
\downarrow sigmoid	\downarrow ReLu
Dense: 10 fully connected neurons	Convolution with 3×3 kernel +1 pad: $12 \times 12 \times 256$
\downarrow	\downarrow ReLu
Output: 1 of 10 classes	Pool with 3×3 max.kernel +2 stride: $5 \times 5 \times 256$
	\downarrow flatten
	Dense: 4096 fully connected neurons
	\downarrow ReLu, dropout p=0.5
	Dense: 4096 fully connected neurons
	\downarrow ReLu, dropout $\mathrm{p}=0.5$
	Dense: 1000 fully connected neurons
	Output: 1 of 1000 classes

VGGNet (2014): 7.3\% error on ImageNet

- Mimic large convolutional filters with multiple small (3×3) convolutional filters
- Every time it halves the spatial size, double the \# of filters

INPUT: [224×224×3] memory: $224 * 224 * 3=150 \mathrm{~K}$ params: 0 (not counting biases)	ConvNet	nfiguration		
CONV3-64: [224x224x64] memory: $224^{*} 224 * 64=3.2 \mathrm{M}$ params: $(3 * 3 * 3)^{*} 64=1,728$	Convet	C	D	
CONV3-64: [224x224x64] memory: $224 * 224 * 64=3.2 \mathrm{M}$ params: $(3 * 3 * 64)^{*} 64=36,864$	13 weight	16 weight	16 weight	19
POOL2: [112x112x64] memory: $112 * 112 * 64=800 \mathrm{~K}$ params: 0	layers	layers	layers	
CONV3-128: [112x112x128] memory: $112 * 112^{*} 128=1.6 \mathrm{M}$ params: $(3 * 3 * 64)^{*} 128=73,728$	put (224 $\times 224 \mathrm{RGB}$ image			
CONV3-128: [112x112x128] memory: $112 * 112^{* 128=1.6 M ~ p a r a m s: ~}(3 * 3 * 128)^{* 128}=147,456$	conv3-64	conv3-64 conv3-64	conv3-64 conv3-64	cc cc
POOL2: [56x56x128] memory: 56*56*128=400K params: 0	maxpool			
CONV3-256: [56x56x256] memory: 56*56*256=800K params: 3 * $3 * 128$)*256 $=294,912$	conv3-128	conv3-128	conv3-128	\%
CONV3-256: [56x56x256] memory: $56 * 56 * 256=800 \mathrm{~K}$ params: $(3 * 3 * 256)^{*} 256=589,824$	conv3-128	conv3-128	conv3-128	co
CONV3-256: [56x56x256] memory: $56 * 56 * 256=800 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 256\right)^{*} 256=589,824$	maxpool			
POOL2: [28x28x256] memory: $28 * 28^{*} 256=200 \mathrm{~K}$ params: 0	conv3-256 conv3-256	$\begin{aligned} & \text { conv3-256 } \\ & \text { conv3-256 } \end{aligned}$	$\begin{aligned} & \text { conv3-256 } \\ & \text { conv3-256 } \end{aligned}$	co co O
CONV3-512: [28x28x512] memory: $28 * 28 * 512=400 \mathrm{~K}$ params: $(3 * 3 * 256) * 512=1,179,648$		conv1-256	conv3-256	co
CONV3-512: [28x28x512] memory: $28 * 28 * 512=400 \mathrm{~K}$ params: $(3 * 3 * 512)^{*} 512=2,359,296$	maxpool			co
CONV3-512: [28x28x512] memory: $28 * 28 * 512=400 \mathrm{~K}$ params: $(3 * 3 * 512) * 512=2,359,296$	$\frac{\text { manver }}{}$	conv3-512	conv3-512	co
POOL2: [14x14x512] memory: 14*14*512=100K params: 0	conv3-512	conv3-512	conv3-512	co
CONV3-512: [14x14x512] memory: 14*14*512=100K params: $3 * 3 * 512$ * $512=2,359,296$		conv1-512	conv3-512	
CONV3-512: [14x14x512] memory: $14 * 14 * 512=100 \mathrm{~K}$ params: $\left(3{ }^{*} 3^{*} 512\right)^{*} 512=2,359,296$	maxpool			
CONV3-512: [14x14x512] memory: 14*14*512=100K params: $(3 * 3 * 512) * 512=2,359,296$	conv3-512	conv3-512	conv3-512	co
POOL2: [7x7x512] memory: $7 * 7 * 512=25 \mathrm{~K}$ params: 0	conv3-512	conv3-512	conv3-512	co
FC: [1x1x4096] memory: 4096 params: $7 * 7 * 512 * 4096=102,760,448$		conv1-512	conv3-512	
FC: [1x1x4096] memory: 4096 params: $4096 * 4096=16,777,216$	maxpool			
FC: [1x1x1000] memory: 1000 params: $4096 * 1000=4,096,000$	FC-4096			
	FC-4096			
	FC-1000			
	soft-max			

ResNet (2016): 3.5\% error on ImageNet

- Proposed in "Deep residual learning for image recognition" by He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. In Proceedings of the IEEE conference on computer vision and pattern recognition,. 2016.
- Apply very deep networks with repeated residual blocks.
- Structure: simply stacking residual blocks, but the network is very deep.
- Let's see the motivation.

Revolution of Depth

152 layers

ImageNet Classification top-5 error (\%)
Kaiming He, Xiangyu Zhang, Shaoqing Ren, \& Jian Sun. "Deep Residual Learning for Image Recognition". arXiv 2015.

Deep nets seem to suffer

- "Overly deep" plain nets have higher training error
- A general phenomenon, observed in many datasets

a deeper counterpart
(34 layers)
- A deeper model should not have higher training error
- A solution by construction:
- original layers: copied from a learned shallower modell
- extra layers: set as identity
- at least the same training error
- Optimization difficulties: solvers cannot find the solution when going deeper...

Skip connections for better optimization

- Skip connections
- $F(x)$ encodes residual representations, which has previously been explored in early works
- When backprop'ing, by the chain rule, gradients will 'flow' directly to the previous layer.
- Recall: when the computation graph splits, the gradient is a summation of the gradients of the branches.
- In contrast, plain CNNs suffer from vanishing gradient problem

ResNet

- VGG-style scheme: halve the special size, double the \# filters
- Max pool appears only once.
- Use conv layer with stride 2 occasionally to reduce the dimension => called "bottleneck" blocks.

ResNet in PyTorch

- Torchvision implementation:
https://pytorch.org/vision/0.8/ modules/torchvision/models/resnet.html

```
class Bottleneck(nn.Module):
    def forward(self, x):
        identity = x
    out = self.conv1(x)
    out = self.bn1(out)
    out = self.relu(out)
    out = self.conv2(out)
    out = self.bn2(out)
    out = self.relu(out)
    out = self.conv3(out)
    out = self.bn3(out)
    if self.downsample is not None:
        identity = self.downsample(x)
    out += identity
    out = self.relu(out)
    return out
```


ImageNet nowadays

- Top-5 accuracy is boring

- SoTA top-1 accuracy is around 90.88%

$$
\text { View } \begin{array}{lll|ll}
\text { Top } 1 \text { Accuracy } & \vee & \text { by } & \text { Date } & \vee
\end{array}
$$ for All models

Summary

- Convolutional neural networks (CNNs): convolution layers, pooling layers
- Some representative CNN architectures

AlexNet (2012)

(1000 classes)

- Won the ImageNet competition with top-5 test error rate of 15.3% (second place was 26.2%).
- Almost just an extension of LeNet-5. But, uses ReLU for the first time.

96 filters of 11×11, stride 4

conv-pool-norm-conv-pool-norm-conv-conv-conv-pool-fc-fc-fc
(norm: not popular these days)

- Consider one filter with weights $\left\{w_{i, j, k}\right\}$ with 5 by 5 by 3
- For every 5 by 5 region of the image, perform inner product (= element wise product, then sum them all)
- This is called convolution.
- then, apply the activation function (e.g., ReLU)
- Results in 28 by 28 matrix - called activation map.
- Now, we can do K of these filters but with a different weight. $\left\{w_{i, j, k}^{(\ell)}\right\}$ for $\ell \in[K]$. => output is $28 \times 28 \times K$
- Terminologies: filter size, receptive field size, kernel.

Comparison: FC vs Conv

- A unique feature of conv layer: parameter is shared across spatial locations.
- In AlexNet, input is 227 by 227 by 3, and the first conv layer output is 55 by 55 by 96 (96 filters)
- Each filter has $11 * 11 * 3$ weights with 1 bias => 364 parameters
- $364 * 96=\underline{34,944}$ total parameters are used to compute the output $55 * 55 * 96=\underline{290,400}$
- What if we didn't do parameter sharing? I.e., for each region of image, use independent filter parameter w.
- roughly, 290,400 * $364=105,705,600$
- What if we use FC to compute the same number of outputs?
- $230,187 * 290,400=66,846,304,800$ parameters
- Conv layer can be seen as imposing inductive bias specialized for images
- This also prevents overfitting: idiosyncratic pattern that appear in few images are not picked up while training! => useless filters are 'squeezed out' or 'crowded out' by useful filters.

