
CSC 580 Principles of Machine Learning

13 Neural networks (NN)

Chicheng Zhang

Department of Computer Science

1

*slides credit: built upon CSC 580 Fall 2021 lecture slides by Kwang-Sung Jun

Neural networks

• Obviously, a dominant approach these days.

• From biological inspirations

• From machine learning point of view, it is one way to train
nonlinear functions (recall kernel methods)

• Turns out, the strength is the representation learning!

• handling images / natural languages

• When the main bottleneck is not the representation, on
par with competitors

2https://pantelis.github.io/cs677/docs/common/lectures/deep-learning-introduction/

Neural networks: some learning resources

(A highly incomplete list)

• ``Deep Learning’’ book by Goodfellow, Bengio, Courville:
https://www.deeplearningbook.org/

• U Washington CS446: https://courses.cs.washington.edu/courses/cse446/19wi/

• Stanford CS231n:
https://www.youtube.com/watch?v=gYpoJMlgyXA&feature=youtu.be&t=20m54s&ab_chan
nel=AndrejKarpathy

• PyTorch tutorials: https://pytorch.org/tutorials/

• Many more...

3

https://www.deeplearningbook.org/
https://courses.cs.washington.edu/courses/cse446/19wi/
https://www.youtube.com/watch?v=gYpoJMlgyXA&feature=youtu.be&t=20m54s&ab_channel=AndrejKarpathy
https://pytorch.org/tutorials/

Warmup: Perceptron

• Perceptron as a neuron

• ℎ𝑤 𝑥 = sign(⟨𝑤, 𝑥⟩)

• Logistic regression

• ℎ𝑤 𝑥 = 𝜎(⟨𝑤, 𝑥⟩)

• Issues: limited expressive power of linear models

• the XOR problem

4

“excellent”

“no”

Multi-layer perceptron (MLP)

• Example: one hidden layer

• In matrix form: ℎ = 𝜎(𝑊𝑥), ො𝑦 = 𝜎 𝑣ℎ

• here 𝜎 denotes elementwise application of scalar function 𝜎

• In short: ො𝑦 = 𝜎 𝑣 ⋅ 𝜎 𝑊𝑥

• Activation function 𝜎 matters:

• Nonlinear 𝜎 results in nonlinear models with good expressive power (complicated decision
boundaries)

• if 𝜎 𝑧 = 𝑧 => ො𝑦 = 𝑣𝑊𝑥 => it’s still linear in the input (just overparameterized)

• Need it to be differentiable for gradient-based training

5recommended simulation: https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

𝑥1

𝑥2

ℎ1

ℎ2

ℎ3

ℎ4

ො𝑦

ℎ𝑖 = 𝜎 σ𝑖=1
𝑑 𝑤𝑖𝑗 𝑥𝑗 , 𝑖 = 1,2,3,4

ො𝑦 = 𝜎 σ𝑖=1
4 𝑣𝑖 ℎ𝑖

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

Activation functions

• Sigmoid function 𝜎 𝑧 =
1

1+𝑒−𝑧

• tanh(z) = 2𝜎 2𝑧 − 1
• tanh is preferred (Section 4.4 of LeCun et al., Efficient BackProp, 1998.)
• Faster convergence when the variables are centered.

• Both above: Vanishing gradient problem

• Solution ReLU(z) = max{z,0} // REctified Linear Unit
• Still, outputs are not centered => batch normalization helps.

• Note: Section 6.3.2. of Deep Learning book
“Sigmoidal activation functions are more common in settings other than feed-forward networks. Recurrent
networks, many probabilistic models, and some autoencoders have additional requirements that rule out
the use of piecewise linear activation functions and make sigmoidal units more appealing despite the
drawbacks of saturation.”

6https://medium.com/@danqing/a-practical-guide-to-relu-b83ca804f1f7

Multi-layer perceptron (MLP): general case

• 𝐿: #hidden layers; 𝑛0 = 𝑑, 𝑛𝐿+1 = 1 (for regression)

• 𝑧𝑖
0
≔ 𝑥𝑖

• For layer 𝑙 ∈ {1, … , 𝐿 + 1}

• 𝑤𝑗𝑖
𝑙
∈ ℝ : weight from neuron 𝑖 from layer 𝑙 − 1 to

neuron 𝑗 in layer 𝑙

• 𝑤𝑗
𝑙
= (𝑤𝑗1

𝑙
, … , 𝑤𝑗𝑛𝑙−1

𝑙
) ∈ ℝ𝑛𝑙−1: j-th neuron weights

• 𝑎𝑗
𝑙
∈ ℝ: j-th neuron output before activation

• 𝑧𝑗
𝑙
∈ ℝ: j-th neuron output after activation

• 𝑊(𝑙) =
−𝑤1

(𝑙)
−

…

−𝑤𝑛𝑙

(𝑙)
−

∈ ℝ𝑛𝑙×𝑛𝑙−1

• In matrix form: ො𝑦 = 𝑊 𝐿+1 𝜎 𝑊 𝐿 …𝜎(𝑊 2 𝜎 𝑊 1 𝑥)

7

𝑥 = 𝑧(0) ∈ ℝ𝑛0

𝑎(1) ∈ ℝ𝑛1
𝑎(2) ∈ ℝ𝑛2

𝑎(3) ∈ ℝ𝑛3
𝑎(4) ∈ ℝ𝑛4

𝑎(5) ∈ ℝ

𝑊(1) 𝑊(2) 𝑊(3) 𝑊(4)

𝑊(5)

Expressive power of neural networks

• (Cybenko, 1989; Hornik et al, 1989)

• Does this mean that there is no benefit in learning deeper networks?

• No (Eldan and Shamir, 2015; Telgarsky, 2016)

8

Neural network: some history

• 60’s: early interest in perceptron, but the XOR problem..

• Minsky-Papert “Perceptrons”, 1969

• MLP was a way to get around, but people did not know how to train it

• Werbos’74 breakthrough: backpropagation (but still hard to get people back)

• NNs became popular again in ‘86 with McClelland, Rumelhart, and Hinton on training large-scale
neural nets.

• Since 2010: NNs took off, with well-developed high-performance computing infrastructure (GPUs)
and easy-to-use programming framework (Tensorflow / Torch / Keras /..)

9

Training neural networks

10

Recap: partial derivatives & gradients

• Given 𝐹 𝑥1, … , 𝑥𝑑 ,

𝜕𝐹

𝜕𝑥𝑖
= lim

Δ→0

𝐹 𝑥1, … 𝑥𝑖 + Δ,… , 𝑥𝑑 − 𝐹(𝑥1, … , 𝑥𝑖 , … , 𝑥𝑑)

Δ

• Measures the sensitivity of 𝐹 with respect to input 𝑥𝑖

• ∇𝐹(𝑥) =
𝜕𝐹

𝜕𝑥1
, … ,

𝜕𝐹

𝜕𝑥𝑑

• The effect of each coordinate 𝑥𝑖 on 𝐹 𝑥 is additive:

• For differentiable 𝐹: 𝐹 𝑥 + Δ𝑥 ≈ 𝐹 𝑥 + ⟨∇𝐹 𝑥 , Δ𝑥⟩

11

Gradient descent revisited

• Minimizing empirical loss 𝐹 𝑤 =
1

𝑛
σ𝑖=1
𝑛 𝑓𝑖(𝑤), 𝑤 ∈ ℝ𝑑

• Gradient descent (GD)

• For 𝑡 = 1,… , 𝑇:

• 𝑤𝑡 ← 𝑤𝑡−1 − 𝜂𝑡 ⋅ ∇𝐹 𝑤𝑡−1

• Mini-batch stochastic gradient descent (SGD)

• For 𝑡 = 1,… , 𝑇:

• Randomly sample a size-𝑘 subset 𝑆𝑡 ⊂ {1,… , 𝑇}

• 𝐹 𝑤 =
1

𝑘
σ𝑖∈𝑆𝑡

𝑓𝑖(𝑤)

• 𝑤𝑡 ← 𝑤𝑡−1 − 𝜂𝑡 ⋅ ∇𝐹
(𝑡) 𝑤𝑡−1

12

Optimization methods: a comparison

Algorithms Number if iterations until
convergence

Time complexity per
iteration

Newton’s method Very small 𝑛𝑑3

LBFGS small 𝑛𝑚𝑑

Gradient descent (GD) large 𝑛𝑑

Stochastic gradient descent
(SGD)

Very large 𝑑

13

• 𝑛: #training examples
• 𝑑: dimensionality of optimization variable 𝑤
• 𝑚: LBFGS’s memory hyperparameter

• But how to obtain ∇𝐹 𝑤 ?

Mini-batch SGD: 𝑘𝑑
Friendly for GPUs

Key tool: Computation graph

• A DAG that describes the order of computation in a general computational process

• Nodes: variables

• Edges: dependency of the variables

• 𝑓1 = 𝐹1(𝑤1, 𝑥),… , 𝑓𝑛 = 𝐹𝑛 𝑤𝑛, 𝑓𝑛−1

• More general than neural networks’ prediction processes

• Sometimes useful to highlight the operation that computes each variable as well

• E.g. 𝑞 = 𝐹𝑞 𝑥, 𝑦 = 𝑥 + 𝑦; 𝑓 = 𝐹𝑓 𝑞, 𝑧 = 𝑞 ⋅ 𝑧

14

Chain rule in computation graphs: an example

• 𝑞 = 𝐹1 𝑥, 𝑦 = 𝑥 + 𝑦; 𝑓 = 𝐹2 𝑞, 𝑧 = 𝑞 ⋅ 𝑧

• Representing function 𝐹 𝑥, 𝑦, 𝑧 = 𝑥 + 𝑦 ⋅ 𝑧

• How to calculate ∇𝐹 =
𝜕𝑓

𝜕𝑥
,
𝜕𝑓

𝜕𝑦
,
𝜕𝑓

𝜕𝑧
?

• Interpretation of
𝜕𝑣

𝜕𝑢
: if node 𝑢 is changed by 1 unit independently, how much does 𝑣 change?

• Using reverse topological order, go over all variables in the graph

•
𝜕𝑓

𝜕𝑞
= −4,

𝜕𝑓

𝜕𝑧
= 3

•
𝜕𝑓

𝜕𝑥
=

𝜕𝑓

𝜕𝑞
⋅
𝜕𝑞

𝜕𝑥
= −4

•
𝜕𝑓

𝜕𝑦
=

𝜕𝑓

𝜕𝑞
⋅
𝜕𝑞

𝜕𝑦
= −4

15
figure from Stanford cs231n

green: node values
red: derivatives

Chain rule in computation graphs: another example
• Assume all variables are scalars for the moment

• How to calculate
𝜕𝑓𝑛

𝜕𝑤1
?

• We will calculate
𝜕𝑓𝑛

𝜕𝑣
for all nodes 𝑣 in the graph

• Calculation order:

𝜕𝑓𝑛

𝜕𝑓𝑛−1
->

𝜕𝑓𝑛

𝜕𝑓𝑛−2
-> …. ->

𝜕𝑓𝑛

𝜕𝑓1
->

𝜕𝑓𝑛

𝜕𝑤1

•
𝜕𝑓𝑛

𝜕𝑓𝑛−2
=

𝜕𝑓𝑛

𝜕𝑓𝑛−1
⋅
𝜕𝑓𝑛−1

𝜕𝑓𝑛−2
,

• …

•
𝜕𝑓𝑛

𝜕𝑓1
=

𝜕𝑓𝑛

𝜕𝑓2
⋅
𝜕𝑓2

𝜕𝑓1

• Finally,
𝜕𝑓𝑛

𝜕𝑤1
=

𝜕𝑓𝑛

𝜕𝑓1
⋅
𝜕𝑓1

𝜕𝑤1

16

Chain rule in computation graphs: another example (cont’d)

• Moreover, the same calculation carries over when the variables are vectors

• In this case, all partial derivatives should be interpreted as Jacobians

• All multiplications are now matrix multiplications

• Intuition: 𝑔 𝑤 = 𝐴𝑤, 𝑓 𝑣 = 𝐵𝑣, 𝑢 = 𝑓 𝑔(𝑤) = (𝐵 ⋅ 𝐴) ⋅ 𝑤

•
𝜕𝑢

𝜕𝑤
=

𝜕𝑢

𝜕𝑣
⋅
𝜕𝑣

𝜕𝑤
= 𝐵 ⋅ 𝐴

• Previous example:

17

𝑑0 𝑑1 𝑑2 𝑑𝑛−1 𝑑𝑛

𝐷1 𝐷2 𝐷𝑛−1 𝐷𝑛

𝑑𝑛 × 𝑑𝑛−1 𝑑𝑛−1 × 𝑑𝑛−2𝑑𝑛 × 𝑑𝑛−2

𝜕𝑓𝑛
𝜕𝑓𝑛−2

=
𝜕𝑓𝑛
𝜕𝑓𝑛−1

⋅
𝜕𝑓𝑛−1
𝜕𝑓𝑛−2

𝑑𝑛 × 𝐷1 𝑑𝑛 × 𝑑1 𝑑1 × 𝐷1

𝜕𝑓𝑛
𝜕𝑤1

=
𝜕𝑓𝑛
𝜕𝑓1

⋅
𝜕𝑓1
𝜕𝑤1

𝑤
𝑔

𝑣
𝑓

𝑢

Important case study: loss gradients for MLP learning

• Input 𝑥 = (𝑥1, … , 𝑥𝑑), label 𝑦

• Assume L hidden layers, layer 𝑙 dimension 𝑛𝑙

• Assume regression task

• Goal: compute the gradients of ℓ(𝑦, ො𝑦) w.r.t. weights

• Treating layers / weights as variables, getting equivalent computation graph:

18see also: https://courses.cs.washington.edu/courses/cse446/19wi/notes/backprop.pdf

(illustrating 𝑛𝑙 =2 for all 𝑙 ≤ 𝐿)

𝑎(𝐿+1)

𝑊(1) 𝑊(2) 𝑊(𝐿) 𝑊(𝐿+1)

𝑎(1) 𝑎(2) 𝑎(𝐿+1) ℓ𝑎(𝐿)

https://courses.cs.washington.edu/courses/cse446/19wi/notes/backprop.pdf

Loss gradients for MLP learning (cont’d)

• Calculating the gradient of ℓ wrt variables in reverse topological order

• First variable: 𝑎(𝐿+1)

•
𝜕𝑙

𝜕𝑎(𝐿+1)
=

𝜕𝑙

𝜕 ො𝑦
=

𝜕
1

2
ො𝑦−𝑦 2

𝜕 ො𝑦
= ො𝑦 − 𝑦 ∈ ℝ

19

ො𝑦 = 𝑎(𝐿+1)

𝑊(1) 𝑊(2) 𝑊(𝐿) 𝑊(𝐿+1)

𝑎(1) 𝑎(2) 𝑎(𝐿+1) ℓ𝑎(𝐿)

Loss gradients for MLP learning (cont’d)

• Calculating the gradient of ℓ wrt variables in reverse topological order

• For every layer 𝑙 ≥ 1, deriving
𝜕ℓ

𝜕𝑎(𝑙)
from

𝜕ℓ

𝜕𝑎(𝑙+1)
:

𝜕ℓ

𝜕𝑎(𝑙)
=

𝜕ℓ

𝜕𝑎(𝑙+1)
⋅
𝜕𝑎(𝑙+1)

𝜕𝑎(𝑙)

•
𝜕ℓ

𝜕𝑎(𝑙+1)
is obtained from previous step

•
𝜕𝑎(𝑙+1)

𝜕𝑎(𝑙)
=

𝜕𝑎(𝑙+1)

𝜕𝑧(𝑙)
⋅
𝜕𝑧 𝑙

𝜕𝑎 𝑙 = 𝑊 𝑙+1 ⋅ diag 𝜎′ 𝑎 𝑙 ∈ ℝ𝑛𝑙+1×𝑛𝑙

20

𝑊(1) 𝑊(2) 𝑊(𝐿) 𝑊(𝐿+1)

𝑎(1) 𝑎(2) 𝑎(𝐿+1) ℓ𝑎(𝐿)

𝑎(𝑙)
𝜎

𝑧(𝑙)
𝑊(𝑙+1)

𝑎(𝑙+1)

𝑎(𝑙) 𝑎(𝑙+1)

Loss gradients for MLP learning (cont’d)

• Calculating the gradient of ℓ wrt variables in reverse topological order

• Finally, deriving
𝜕ℓ

𝜕𝑊(𝑙) from
𝜕ℓ

𝜕𝑎(𝑙)
:

• Observe that 𝑤𝑗𝑖
(𝑙)

only directly influences 𝑎𝑗
𝑙

and no other nodes

•
𝜕ℓ

𝜕𝑤𝑗𝑖
(𝑙) =

𝜕ℓ

𝜕𝑎𝑗
(𝑙) ⋅

𝜕𝑎𝑗
𝑙

𝜕𝑤𝑗𝑖
𝑙 =

𝜕ℓ

𝜕𝑎𝑗
𝑙 ⋅ 𝑧𝑖

(𝑙−1)

• In matrix form:
𝜕ℓ

𝜕𝑊(𝑙) = 𝑧 𝑙−1 𝜕ℓ

𝜕𝑎 𝑙

⊤
∈ ℝ𝑛𝑙×𝑛𝑙−1

21

𝑊(1) 𝑊(2) 𝑊(𝐿) 𝑊(𝐿+1)

𝑎(1) 𝑎(2) 𝑎(𝐿+1) ℓ𝑎(𝐿)

Loss gradients for MLP learning: Summary

To calculate
𝜕ℓ

𝜕𝑊
given example (𝑥, 𝑦)

(Forward propagation)

• For 𝑙 = 1, . . , 𝐿:

• Compute 𝑎(𝑙+1) based on 𝑎(𝑙)

• Compute loss ℓ =
1

2
ො𝑦 − 𝑦 2, where ො𝑦 = 𝑎(𝐿+1)

(Backward propagation)

• Last layer:
𝜕𝑙

𝜕𝑎(𝐿+1)
=

𝜕𝑙

𝜕 ො𝑦
= (ො𝑦 − 𝑦)

• For 𝑙 = 𝐿, . . , 1:

•
𝜕ℓ

𝜕𝑎(𝑙)
=

𝜕ℓ

𝜕𝑎(𝑙+1)
⋅ 𝑊 𝑙+1 ⋅ diag 𝜎′ 𝑎 𝑙 ∈ ℝ1×𝑛𝑙

•
𝜕ℓ

𝜕𝑊(𝑙) = 𝑧 𝑙−1 𝜕ℓ

𝜕𝑎 𝑙

⊤
∈ ℝ𝑛𝑙×𝑛𝑙−1

22

𝑊(1) 𝑊(2) 𝑊(𝐿) 𝑊(𝐿+1)

𝑎(1) 𝑎(2) 𝑎(𝐿+1) ℓ𝑎(𝐿)

Gradient calculations on general computation graphs

• So far, we have seen gradient calculations on special computation graphs, e.g. chains; trees

• How to perform gradient calculations for general computation graphs?

• Chain rule still applies (although the reason is much more subtle)

• For each node 𝑣 (in reverse topological order):

•
𝜕ℓ

𝜕𝑣
= σ𝑢:𝑣 is a parent of 𝑢

𝜕ℓ

𝜕𝑢
⋅
𝜕𝑓𝑢

𝜕𝑣
-- 𝑓𝑢: the operation at node 𝑢

• The subtlety: for general graphs
𝜕𝑓𝑢

𝜕𝑣
≠

𝜕𝑢

𝜕𝑣
(although it is true for the examples we went over)

23https://www.researchgate.net/figure/The-computational-graph-illustrates-the-loss-9-For-simplicity-we-omit-the-bias-terms_fig2_332368735

Backward gradient calculation is also a computation graph

• Taken from https://pytorch.org/blog/overview-of-pytorch-autograd-engine/

24

https://pytorch.org/blog/overview-of-pytorch-autograd-engine/

Automatic Differentiation (Autodiff)

• In fact, implementations of complicated functions (sin, cos, etc.) in computers are approximation
computed by basic arithmetic operations.

• Reverse-mode auto-differentiation

• input: a function f in a programming language (e.g., python) and its input x

• output: the derivative of f at x

• Draw the computation graph, evaluate values at nodes, then compute the gradients backwards.

• E.g., pytorch

25

Autodiff example

26

following https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html

import torch

#- turn on the gradient tracking
x = torch.tensor([[1.0,2],[3,4]],requires_grad=True)
requires_grad is False by default
print(x)

#-
y = x + 2
print(y) #- because we did `requires_grad`, it tracks who created it.

z = y * y * 3
out = z.mean()
print(z)
print(out)

z.retain_grad()
out.backward() # execute backward pass

print("#- grads")
print(y.grad)
print(z.grad)
print(x.grad)

tensor([[1., 2.],
[3., 4.]], requires_grad=True)

tensor([[3., 4.],
[5., 6.]], grad_fn=<AddBackward0>)

tensor([[27., 48.],
[75., 108.]], grad_fn=<MulBackward0>)

tensor(64.5000, grad_fn=<MeanBackward0>)
#- grads
None
tensor([[0.2500, 0.2500],

[0.2500, 0.2500]])
tensor([[4.5000, 6.0000],

[7.5000, 9.0000]])
<ipython-input-40-a3156942a32d>:22: UserWarning: The .grad attribute of a Tensor that is
not a leaf Tensor is being accessed. Its .grad attribute won't be populated during autograd.b
ackward(). If you indeed want the gradient for a non-leaf Tensor, use .retain_grad() on the n
on-leaf Tensor. If you access the non-leaf Tensor by mistake, make sure you access the leaf T
ensor instead. See github.com/pytorch/pytorch/pull/30531 for more informations.

print(y.grad)

pytorch is optimized for obtaining the gradient of f w.r.t. the
input only. If you want to obtain intermediate gradients, you
need to use retain_grad().

Forming the
computational
graph

Computing
𝜕out

𝜕𝑣
for all 𝑣

by backward calculation

Autodiff

(Taken from Matus Telgarsky’s deep learning lecture: https://mjt.cs.illinois.edu/ml/lec8.pdf)

27

When autodiff is not available..

• The standard answer to “my stochastic gradient descent is not converging”:

• Are you sure your derivatives are computed correctly? Debug it with finite difference method.

• Finite difference method for 𝑓(𝑥) where 𝑥 = (𝑥1, … , 𝑥𝑑) ∈ ℝ𝑑.

• 𝑒𝑖 is the indicator vector (equivalently, one-hot vector for the 𝑖-th coordinate)

28

for small enough ℎ𝑖

Better optimization methods
• Issues with SGD: 𝑤𝑡+1 = 𝑤𝑡 − 𝜂∇𝑓(𝑤𝑡)

• Oscillating iterates

29

Solutions

• Momentum: 𝑤𝑡+1 = 𝑤𝑡 + 𝛿𝑡 where 𝛿𝑡 = 𝜇 ⋅ 𝛿𝑡−1 − 𝜂∇𝑓(𝑤𝑡) (e.g., 𝜇 ≈ 0.99)

• Nesterov Momentum: provably better (but for convex, nonstochastic (=batch) gradient descent)

https://eloquentarduino.github.io/2020/04/stochastic-gradient-descent-on-your-microcontroller/

Better optimization methods

• Adagrad: 𝑤𝑡+1 = 𝑤𝑡 + 𝛿𝑡, where 𝛿𝑡 = −𝜂 ⋅
∇𝑖𝑓 𝑤𝑡

𝐴𝑖+𝜖 𝑖

and 𝐴𝑖 = σ𝑠=1
𝑡 ∇𝑖𝑓 𝑤𝑡

2
, 𝜖 ≈ 1𝑒−7

• Intuition: use a separate learning rate for each coordinate

• 𝜖 > 0 guards against the case where gradients are 0 at the beginning.

• gradients get really small in the end!

• RMSProp: exponential moving averages of squared past gradients, 𝐴𝑖 ← 𝜌𝐴𝑖 + (1 − 𝜌) ∇𝑖𝑓 𝑤𝑡
2

• adjustment so that 𝐴𝑖 do not grow too large

• Useful for nonconvex objectives

• Optimizers may want to “forget” about historical info

30

Controversies on the optimization methods

• Adam: loosely speaking: combining RMSProp with momentum

• The default setting seems to work very well.

• Error in the convergence proof, and then a paper trying to fix the error again has an error..

• The counterexample provided before is prominent in the batch gradient descent only.

• Not clear how relevant it is in SGDs; there is no theoretical evidence that momentum gives you
a better convergence rate.

• NeurIPS’17

• Tuning the learning rate correctly, SGD is no worse
than adaptive gradient methods.

• Others say that being less sensitive to tuning stepsize
is exactly why we use adaptive gradient methods.

31

Optimization tips

• Learning rate schedule

• Simple way: halve it after each epoch

• Let 𝑡 be the iteration (=step) index (could also use epoch index)

• 𝜂 = 𝑎 exp(−𝑘𝑡)) for some a and k

• 𝜂 = 𝑎/(1 + 𝑘𝑡)

• Often, people monitor validation set error, and when it starts to saturate, divide the stepsize by
10

• Convergence

• Monitor train set acc, validation set accuracy (or train/validation loss function value).

32

The vanishing / exploding gradient problem

•
𝜕ℓ

𝜕𝑎 1 = ො𝑦 − 𝑦 ⋅ 𝑊 𝐿+1 ⋅ diag 𝜎′ 𝑎 𝐿 ⋅ … ⋅ 𝑊 2 ⋅ diag 𝜎′ 𝑎 1

• With 𝐿 layers =>
𝜕ℓ

𝜕𝑎 1 can be exponentially small => vanishing gradient

• Moreover: some 𝑎 𝐿 ’s are “saturated”, making 𝜎′ 𝑎 𝐿 close to 0

• Likewise,
𝜕ℓ

𝜕𝑎 1 can be exponentially large => exploding gradient

• As we will see, there are methods that alleviate this issue (e.g. good initialization, batch
normalization, skip connection, …)

33

Tips and tricks

Weight initialization

• Never do symmetric weight initialization! => Otherwise, results in identical nodes

• Naïve: 0.01 * unit gaussian random number

• Xavier initialization (2010): (unit gaussian) / sqrt(fan_in)

• fan_in: how many nodes in the previous layer

• works for tanh() but not for ReLU

• Intuition: for every node 𝑖, keeps input σ𝑗=1
𝑛𝑙 𝑤𝑖𝑗 ℎ𝑗 = Θ(1)

• He et al. (2015): For ReLU, do (unit gaussian) / sqrt(fan_in/2)

Image preprocessing

• Two popular: (i) subtract average image or (ii) subtract per-channel (∈{R,G,B}) average.

34see more tricks: https://www.youtube.com/watch?v=gYpoJMlgyXA&list=PLkt2uSq6rBVctENoVBg1TpCC7OQi31AlC&index=5&ab_channel=AndrejKarpathy

Training loss

• Minimize:
1

𝑛
σ𝑖=1
𝑛 ℓ 𝑓 𝑥𝑖 , 𝑦𝑖 // 𝑓 is the entire network

• It’s common to add L2 regularizer:
1

𝑛
σ𝑖=1
𝑛 ℓ 𝑓 𝑥𝑖 , 𝑦𝑖 +

𝜆

2
σ𝑙,𝑗,𝑘 𝑤𝑘,𝑗

𝑙
2

• For regression: ℓ 𝑓 𝑥 , 𝑦 =
1

2
𝑓 𝑥 − 𝑦 2

• For binary classification: ℓ 𝑓 𝑥 , 𝑦 = log 1 + exp −𝑦 ⋅ 𝑓 𝑥

• For 𝐾-class classification: logistic loss = cross entropy loss + softmax layer

• Have 𝐾 output nodes

• ℓ Ԧ𝑓, 𝑦 = − log 𝜎 Ԧ𝑓
𝑦

(cross-entropy loss, aka negative log likelihood)

with 𝜎 Ԧ𝑓
𝑐
=

𝑒𝑓𝑐

σ𝑗=1
𝐶 𝑒

𝑓𝑗
, 𝑐 = 1,… , 𝐾 (softmax transformation)

• Reduces to binary logistic loss if 𝐾 = 2, Ԧ𝑓2 = 0

• Quick question: can you derive the formulae for
𝜕ℓ Ԧ𝑓,𝑦

𝜕𝑊
for these new ℓ’s?

35

𝑙: layer index
𝑗: input node index
𝑘: output node index

Ԧ𝑓 ∈ ℝ𝐾 is the output of NN

ො𝑦 ∈ {−1,1}

Other regularizations

• Data augmentation

• Flip

• Rotation

• Crop

• Scale

• Translation

• Adding Gaussian noise

• More modern: do style transfer with generative models

36Figure from Image Classification with Pyramid Representation and Rotated Data Augmentation on Torch 7, by Kevin Wang

Other regularizations

• Dropout

• For each example, only train with a random

subset of the nodes

• Can be viewed as training an ensemble of models

• Computation graph view (W omitted):

• Original With Dropout

37

Figures from Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava
et al. JMLR 2014

Hyperparameter search

• Those from architectural parameter (# of layers / # of hidden units)

• Those from optimization (stepsize, momentum discount factor)

• Those from regularization (L2 reg. strength)

• Use: Random Layout.

38
Random search for hyper-parameter optimization, Bergstra and Bengio, 2012

Ex: optimizing 𝑓(𝑥, 𝑦) = 𝑔(𝑥) + ℎ(𝑦)

𝑥, 𝑦 are hyperparameters
𝑔 has large variation
ℎ has little variation

Batch normalization

• Recall: optimization is easier when the inputs of each layer is within constant interval, say [-2,2]

• Can we ``enforce’’ this by modifying the NN’s design?

• Key idea: Let’s add a layer that normalizes the inputs!

• Recall minibatch SGD

• Computes gradients for 𝑚 data points, then updates the weights.

• => gradients are more stable

• e.g., ResNet (2015): m=256.

• Can we ensure that within a batch, for a layer, most of the inputs are “standardized”?

39

Batch normalization layer

40Batch Normalization: Accelerating Deep Network Training by Reducing Internal
Covariate Shift. Ioffe, Szegedy. ICML 2015

Common heuristic: add BN layers before
activation functions instead of after

Why is 'scale and shift’ 𝛾𝑥 + 𝛽 helpful?
This new parameterization may allow easier
optimization

All calculations are in the computational graph,
(and are subject to autodiff / backprop)

Batch normalization

• Improves ‘gradient flow’ => reduce dead ReLUs / vanishing gradients in tanh.

• Less sensitive to the initialization => allows higher learning rates.

• One twist for the test time

• Once converged, gather statistics throughout the dataset to compute the final 𝜇 and 𝜎2 (∃
variations of this)

• On any test example 𝑥: use the 𝜇 and 𝜎2 computed above computed in training time

41

Why does it work?

42

(2015) (2018)

“it makes the optimization landscape significantly smoother”

Kernel methods can be viewed a special case of NNs.

• Recall: kernels compute the feature map, followed by linear operations.

• ℎ 𝑥 = sign 𝑤∗, 𝜙 𝑥 + 𝑏∗ = sign σ𝑖 𝛼𝑖
∗𝑦𝑖𝐾(𝑥𝑖 , 𝑥) + 𝑏∗

43

Q: how is this different from NNs?

Next lecture (11/14)

• More on neural networks: convolutional neural networks (CNNs)

• Assigned reading: PyTorch tutorial from Berkeley CS 285:
https://rail.eecs.berkeley.edu/deeprlcourse/static/slides/lec-3.pdf (go over the jupyter notebook at
the end)

• Can help your HW4

• Optional reading:

• Matus Telgarsky’s PyTorch tutorial: https://mjt.cs.illinois.edu/ml/ (the jupyter notebook)

• Contains some more advanced materials, e.g. batchnorm

44

https://rail.eecs.berkeley.edu/deeprlcourse/static/slides/lec-3.pdf
https://mjt.cs.illinois.edu/ml/

