CSC 580 Principles of Machine Learning

12 A closer look at PGMs; Hidden Markov Models

Chicheng Zhang

Department of Computer Science

TAL THE UNIVERSITY
. OF ARIZONA

Background: A deeper look at conditional independence

- Recall the graphical representation (plate notation) specifies the dependency
- More precisely, it specifies how a joint distribution can be factored in a structured way
- Remark: We focus on directed graphical models (Bayes nets)
- another world: undirected models
- Intro example:
- $P(A=a, B=b, C=c)=P(C=c \mid A=a, B=b) \cdot P(A=a, B=b)$

$$
\begin{aligned}
& =P(C=c \mid A=a, B=b) \cdot P(B=b \mid A=a) \cdot P(A=a) \\
& \text { bution, add direct links from the nodes being }
\end{aligned}
$$

- Graphical representation:

For each conditional distribution, add direct links from the nodes being conditioned to the node whose distribution is of interest

Warning: notation convention

- Notation easily gets overwhelming, no easy way out.
- Fully-specified notation: explicit, but takes too long to process
- Simplified notation: concise, but takes time to train yourself to be familiar
- Probabilistic models: For fully-specified notation, we always need to specify the random variable and the value that it takes separately.
- E.g. $P(A=a, B=b, C=c)=P(C=c \mid A=a, B=b) \cdot P(A=a, B=b)$

$$
=P(C=c \mid A=a, B=b) \cdot P(B=b \mid A=a) \cdot P(A=a)
$$

- Simplified notation: $P(a, b, c)=P(c \mid a, b) \cdot P(a, b)$

$$
=P(c \mid a, b) \cdot P(b \mid a) \cdot P(a)
$$

- i.e. reserve symbol a for values taken by random variable A (same for B, C)
- We will use simplified notation throughout this lecture

PGM: flexible modeling of data distributions

- Q: what kind of distribution does this graph represent?
- $P\left(x_{1}, x_{2}, \ldots, x_{7}\right)=P\left(x_{1}\right) P\left(x_{2}\right) P\left(x_{3}\right) P\left(x_{4} \mid x_{1}, x_{2}, x_{3}\right)$.

$$
P\left(x_{5} \mid x_{1}, x_{3}\right) P\left(x_{6} \mid x_{4}\right) P\left(x_{7} \mid x_{4}, x_{5}\right)
$$

- For a general directed acyclic graph (DAG) G with K nodes x_{1}, \ldots, x_{K},

$$
P\left(x_{1}, x_{2}, \ldots, x_{K}\right)=\prod_{k=1}^{K} P\left(x_{k} \mid \text { pa }\right)_{k} \quad \text { Parent nodes of } x_{k} \text { in } G
$$

- Fact: this implicitly implies $P\left(x_{k} \mid \mathrm{pa}_{k}\right)=P\left(x_{k} \mid x_{1}, \ldots, x_{k-1}\right)$, i.e. $x_{k} \Perp\left\{x_{1}, \ldots, x_{k-1}\right\} \backslash \mathrm{pa}_{k} \mid \mathrm{pa}_{k}$
- E.g. $x_{6} \Perp\left\{x_{1}, x_{2}, x_{3}, x_{5}\right\} \mid x_{4}$
- Edges oftentimes encode causal relationships between the node variables

Bayes net = DAG + Conditional probability table

- $P\left(x_{1}, x_{2}, \ldots, x_{K}\right)=\prod_{k=1}^{K} P\left(x_{k} \mid \mathrm{pa}_{k}\right)$ <- also need to specify each $P\left(x_{k} \mid \mathrm{pa}_{k}\right)$ respectively
- Aside: $J \Perp B, E \mid A=>$ the effect of B, E to John's calling is "completely captured" in Alarm status

Figure 13.2 A typical Bayesian network, showing both the topology and the conditional probability tables (CPTs). In the CPTs, the letters B, E, A, J, and M stand for Burglary, Earthquake, Alarm, JohnCalls, and MaryCalls, respectively.

PGM: parsimonious representation of distributions

- Suppose each $x_{1}, x_{2}, \ldots, x_{K}$ take binary values
- Naively representing $P\left(x_{1}, x_{2}, \ldots, x_{K}\right)$ requires 2^{K} entries
- With graphical model representation

$$
P\left(x_{1}, x_{2}, \ldots, x_{K}\right)=\prod_{k=1}^{K} P\left(x_{k} \mid \mathrm{pa}_{k}\right)
$$ probability tables (CPTs). In the CPTs, the letters B, E, A, J, and M stand for Burglary, Earthquake, Alarm, JohnCalls, and MaryCalls, respectively.

Each $P\left(x_{k} \mid \mathrm{pa}_{k}\right)$ takes $2^{\left|\mathrm{pa}_{k}\right|+1}$ entries
so total representation complexity $\leq \sum_{k} 2^{\left|\mathrm{pa}_{k}\right|+1} \leq 2^{O\left(\max _{k}\left|\mathrm{pa}_{k}\right|\right)}$
much smaller than 2^{K} if $\max _{k}\left|p a_{k}\right| \ll K$ (we will see that this happens in many natural PGMs) k

Three landmark examples

- tail-to-tail

- Head-to-tail

- head-to-head

Ex 1: Tail-to-tail (common cause)

- $P(a, b, c)=P(c) P(a \mid c) P(b \mid c)$
- $P(a, b)=\sum_{c} P(c) P(a \mid c) P(b \mid c)$ and in general it does not factorize
=> It is generally not true that $a \Perp b$
(e.g. John's calling is correlated with Mary's calling)

- However, $P(a, b \mid c)=\frac{P(a, b, c)}{P(c)}=P(a \mid c) P(b \mid c)$
$\Rightarrow a \Perp b \mid c$

Ex 2: head-to-tail

- $P(a, b, c)=P(a) P(c \mid a) P(b \mid c)$
- $P(a, b)=P(a) \sum_{c} P(c \mid a) P(b \mid c)=P(a) \cdot P(b \mid a)$
=> It is generally not true that $a \Perp b$
(e.g. "Cloudy" is correlated with "Wet grass")

- However, $P(a, b \mid c)=\frac{P(a, b, c)}{P(c)}=\frac{P(a) P(c \mid a) P(b \mid c)}{P(c)}=P(a \mid c) P(b \mid c)$

$\Rightarrow a \Perp b \mid c$
- Another important example: Markov chain (for time series data)

Ex 3: head-to-head (common effect)

- $P(a, b, c)=P(a) P(b) P(c \mid a, b)$
- $P(a, b)=\sum_{c} P(a) P(b) P(c \mid a, b)=P(a) P(b)$

=> $a \Perp b$
- However, $P(a, b \mid c)=\frac{P(a, b, c)}{P(c)}=\frac{P(a) P(b) P(c \mid a, b)}{P(c)}$ does not necessarily factorize
=> It is generally not true that $a \Perp b \mid c$

Ex 3: head-to-head (cont'd)

- If you pick an applicant randomly, the GRE and GPA is

GRE

GPA independent (according to our model)

- However, if you randomly pick an applicant who was accepted, then the low GRE may indicate that she had a high GPA.
- Otherwise the student would have been rejected.
- This is called the explain-away phenomenon.

- Another example:
- B and E are dependent, conditioned on A
- It is also true that B and E are dependent, conditioned on descendants of A (e.g. J)

Summary

$a \Perp b ?$
$a \Perp b \mid c ?$

- tail-to-tail

No

Yes

- Head-to-tail

- head-to-head

Yes
No

Next lecture (10/31)

- Markov models; Hidden Markov models (HMMs)
- Assigned reading: Prof. Jason Pacheco's PGM slides: https://www2.cs.arizona.edu/~pachecoj/courses/csc535_fall20/lectures/pgms.pdf
- Additional reading: Bishop, "Pattern Recognition and Machine Learning", Section 8.1-8.2

D-separation

- Systematic Rules for determining conditional independence given a directed acyclic graph.
- Answer questions of the form: Is $a \Perp b \mid c$ true or false ?

- [Def] b is a descendent of a if there exists a directed path from a to b.
- $=>a$ is a descendent of a by definition.
- [Def] An undirected path p from a to b is blocked given c if it includes a node:
- (a) the arrows on p meet either head-to-tail or tail-to-tail at the node, and the node is c , OR
- (b) the arrows meet head-to-head at the node, and neither the node nor any of its descendants is c
"Conditioned on c being observed, information can flow from a to b through path p "
- [Def] (D-separation)
a is \mathbf{d}-separated from b given c if every undirected path between a and b is blocked given c.
- [Thm] If a is d -separated from b given c , then $a \Perp b \mid c$.

Blockage: pictorial illustration

An undirected path p is blocked given c if it includes a node:

(1) the arrows on p meet either head-to-tail or tail-to-tail at the node, and the node is c , or
(2) the arrows meet head-to-head at the node, and neither the node nor any of its descendant is c

D-separation examples

- a to b has only one path $p=a-e-f-b$
- In (a): Is $a \Perp b \mid c$? No, p is not blocked given c
- In (b): Is $a \Perp b \mid f$? Yes, p is blocked given f
- Is $a \Perp b$?

(a)

An undirected path p is blocked given c if it includes a node: (1) the arrows on p meet either head-to-tail or tail-to-tail at the node, and the node is c , or
(2) the arrows meet head-to-head at the node, and neither the node nor any of its descendant is c

D-separation: general definition for node sets

- $\mathrm{Q}:$ Is $\mathrm{A} \Perp \mathrm{B} \mid \mathrm{C}$ true or false ?
- Each of A, B, C is a set of random variables
- [Def] An undirected path p from a to b is blocked given C if it includes a node:
- (a) the arrows on p meet either head-to-tail or tail-to-tail at the node, and the node is in C
- (b) the arrows meet head-to-head at the node, and neither the node nor any of its descendants is in C
- [Def] (D-separation)
A is d-separated from B given C if every undirected path between $a \in A$ and $b \in B$ is blocked given C.
- [Thm] If A is d-separated from B given C, then $A \Perp B \mid C$.

D-separation: an exercise

- Is $G \Perp A$ - equivalently, $G \Perp A \mid \emptyset$?
- Yes, G-H-D-E-C-A is blocked by E G-F-E-C-A is blocked by F
- Is $E \Perp H \mid\{D, G\}$?

- Yes, E-D-H is blocked by D; E-F-G-H is blocked by F (or G)
- Is $E \Perp H \mid\{C, D, F\}$?
- No, although E-D-H is blocked by D, E-F-G-H is not blocked

Sequential data

- So far, we have dealt with IID data: $\quad z_{i} \sim \mathcal{D}$
- What if the data has dependency between z_{i} and z_{j} ?
- E.g., sequentially generated: $z_{i} \mid z_{1: i-1} \sim D\left(\Theta=f\left(z_{1: i-1}\right)\right)$
- Notation: $x_{1: n}$ means x_{1}, \ldots, x_{n}
- Examples:
- Spoken language: $z_{1: n}, \quad z_{t} \in[W]$: word index
- What word you say depends on what you just said; 'context'.
- Human movement, say soccer: $z_{1: n}=>$ video (sequence of pictures, say every $1 / 24$ second)
- It's a video, so the dependency is natural (e.g., you cannot teleport).
- Biology: amino acid/protein sequence.

Guiding example: Speaker diarization

- You have recorded a meeting happened with K people. Can we segment it according to speakers' identities?

- Data: audio sequence $x_{1: n}$,
- $x_{t} \in \mathbb{R}^{d}$ auditory features during a short time interval (e.g., 100 ms).
- Goal: Segment the audio with contiguous blocks where each block is assigned a speaker index.
- i.e., infer $z_{t} \in[K]$ indicating who was speaking at time point t .
- Let's call z_{t} a state.
- Key characteristic: sequential dependency!
- stickiness: if you spoke at time t, you are likely to be speaking at time t+1.
- transition: there are more frequent transition pairs than other pairs. (the boss keeps correcting a newbie)

Hidden Markov model (HMM)

- Graphical representation:

- The key characteristic: Markovian assumption
- Only model the first-order dependency
- Possible to add the dependency up to τ past z_{t} 's, but remember the bias-variance tradeoff.
- Further, the computational complexity.
- Productive mindset: try a simple model, and fix it only if it does not work.
- In fact, we can work with M sequences: observations $\left\{x_{m, t}\right\}_{m \in[M], t \in[N]}$
- hidden states $\left\{z_{m, t}\right\}_{m \in[M], t \in[N]}$ unobserved
- N can even be different for each m.
- But we will mainly work with the case of $\mathrm{M}=1$.

HMM - generative story

- The joint distribution over (observations, hidden states)

$$
P\left(x_{1: n}, z_{1: n}\right)=P\left(z_{1}\right) \cdot \prod_{i=2}^{n} P\left(z_{i} \mid z_{i-1}\right) \cdot \prod_{i=1}^{n} P\left(x_{i} \mid z_{i}\right)
$$

- Corresponding generative story:
- $z_{1} \sim$ Categorical (π)
- For $i=2, \ldots, n$:
- Draw $z_{i} \sim$ Categorical $\left(A_{z_{i-1}}\right)$
- For $i=1,2, \ldots, n$:

$$
A=\left(\begin{array}{c}
-A_{1}- \\
\ldots \\
-A_{K}-
\end{array}\right), \phi=\left(\begin{array}{c}
-\phi_{1}- \\
\ldots \\
-\phi_{K}-
\end{array}\right)
$$

- Draw $x_{i} \sim P_{\phi_{z_{i}}}(\cdot)$
- e.g. $P_{\phi}=$ Categorical (ϕ), or $P_{\phi}=N(\phi, I)$

HMM model specification

- Model parameters Θ is composed of:
- Initial distribution π
- Transition probability A
- Emission distribution parameter ϕ
- Likelihood: $P\left(x_{1: n}, z_{1: n} ; \Theta\right)=P\left(z_{1} ; \pi\right) \cdot \prod_{i=2}^{n} P\left(z_{i} \mid z_{i-1} ; A\right) \cdot \prod_{i=1}^{n} P\left(x_{i} \mid z_{i} ; \phi\right)$
- Marginal likelihood $P\left(x_{1: n} ; \Theta\right)=\sum_{z_{1: n}} P\left(x_{1: n}, z_{1: n} ; \Theta\right)$
- Comparison to GMM
- z_{i} 's has the same role as k_{i} 's
- HMM allows temporal dependence of hidden states
- HMM's emission distribution is not necessarily Gaussian

HMM example

Gaussian emission model $P(x \mid z=k ; \phi)=P_{\phi_{k}}(x)=N\left(\mu_{k}, \Sigma_{k}\right)$

HMM: key conditional independence structure

- Claim: conditioned on z_{t}, the following three groups of r.v.'s, $(x, z)_{1: t-1}, x_{t},(x, z)_{t+1: n}$, are independent
- How to show A, B, C are independent?

- One way: show $A \Perp B$ and $C \Perp(A, B)$
- Checking conditional independence by d-separation:

$$
\begin{aligned}
& (x, z)_{1: t-1} \Perp x_{t} \mid z_{t} \\
& (x, z)_{1: t-1}, x_{t} \Perp(x, z)_{t+1: n} \mid z_{t}
\end{aligned}
$$

- Consequences: e.g. $P\left(x_{t} \mid z_{t}, x_{1: t-1}\right)=P\left(x_{t} \mid z_{t}\right), P\left(z_{t+1} \mid z_{t}, x_{1: t-1}\right)=P\left(z_{t+1} \mid z_{t}\right)$

Main tasks for HMM

- Task 1 [inference]: Given an HMM and the observation $x_{1: n}$, how likely is it to observe the given sequence? What is the posterior distribution of z_{t} for each t ?
- $p\left(x_{1: n}\right)$ => used for checking convergence, comparing various models, model selection, etc.
- $p\left(z_{t}=k \mid x_{1: n}\right), \forall t$
- Task 2 [inference - "decoding"]: Given an HMM and the observation $x_{1: n}$, what is the most likely hidden state sequence?
- i.e., $z_{1: n}^{*}=\arg \max _{z_{1: n}} p\left(z_{1: n} \mid x_{1: n}\right)$
- This gives you the ultimate answer to our speaker diarization task.
- Task 3 [learning]: Given the observation $x_{1: n}$, learn the HMM parameters.

Task 1: inference

- Naively, calculating $P\left(x_{1: n}\right)=\sum_{z_{1: n}} P\left(x_{1: n}, z_{1: n}\right)$ takes time exponential in n
- Can we do better?
- Key observation: can use dynamic programming to save computation
- Subproblem: compute $P\left(x_{1: t}\right)$ for every t ?
- A slightly different subproblem

$$
\begin{aligned}
P\left(x_{1: t}, z_{t}=k\right) & =P_{\phi_{k}}\left(x_{t}\right) \cdot P\left(x_{1: t-1}, z_{t}=k\right) \\
& =P_{\phi_{k}}\left(x_{t}\right) \cdot \sum_{j} P\left(x_{1: t-1}, z_{t-1}=j, z_{t}=k\right) \\
& =P_{\phi_{k}}\left(x_{t}\right) \cdot \sum_{j} P\left(z_{t}=k \mid x_{1: t-1}, z_{t-1}=j\right) \cdot P\left(x_{1: t-1}, z_{t-1}=j\right) \\
& =P_{\phi_{k}}\left(x_{t}\right) \cdot \sum_{j} A_{j k} \cdot P\left(x_{1: t-1}, z_{t-1}=j\right)
\end{aligned}
$$

- Initial condition: $\alpha_{1, k}=P\left(x_{1}, z_{1}=k\right)=P_{\phi_{k}}\left(\begin{array}{c}\alpha_{1-1, j}\end{array}\right.$
- Time complexity for computing all $\left\{\alpha_{t, k}\right\}$: $O\left(n K^{2}\right)$-forward algorithm

Next lecture (11/2)

- Inference in HMMs; Learning in HMMs: Expectation-Maximization
- Assigned reading: Prof. Jason Pacheco's slides on Dynamic Systems: https://www2.cs.arizona.edu/~pachecoj/courses/csc535 fall20/lectures/dynamicalsys.pdf
- HW3 will be released soon

Announcements

- HW3 is up (due 11/16)
- Please review my feedback on your project proposals

Task 1: inference (cont’d)

- How to compute $p\left(z_{t}=k \mid x_{1: n}\right), \forall t$?
- It suffices to compute $p\left(z_{t}=k, x_{1: n}\right)$ for all k

$$
\Rightarrow p\left(z_{t}=k \mid x_{1: n}\right)=\frac{p\left(z_{t}=k, x_{1: n}\right)}{p\left(x_{1: n}\right)}=\frac{p\left(z_{t}=k, x_{1: n}\right)}{\sum_{j} p\left(z_{t}=j, x_{1: n}\right)}
$$

- Forward algorithm gives us: $\alpha_{t, k}=P\left(x_{1: t}, z_{t}=k\right)$
- Key observation: $x_{1: t} \Perp x_{t+1: n} \mid z_{t}$

$$
\begin{aligned}
\Rightarrow p\left(z_{t}=k, x_{1: n}\right) & =p\left(z_{t}=k, x_{1: t}\right) \cdot p\left(x_{t+1: n} \mid z_{t}=k, x_{1: t}\right) \\
& =\alpha_{t, k} \cdot p\left(x_{t+1: n} \mid z_{t}=k\right)
\end{aligned}
$$

- Define $\beta_{t, k}:=p\left(x_{t+1: n} \mid z_{t}=k\right)$. Can we compute it efficiently?

Task 1: inference (cont’d)

- $\beta_{t, k}:=P\left(x_{t+1: n} \mid z_{t}=k\right)$
- Can also compute it using dynamic programming

- Observe: $\beta_{n, k}=1$
- Claim: $\beta_{t, k}=\sum_{j=1}^{K} A_{k j} P_{\phi_{j}}\left(x_{t+1}\right) \beta_{t+1, j}$
- Proof:

$$
\begin{aligned}
P\left(x_{t+1: n} \mid z_{t}=k\right) & =\sum_{j} P\left(x_{t+1: n}, z_{t+1}=j \mid z_{t}=k\right) \\
& =\sum_{j} P\left(z_{t+1}=j \mid z_{t}=k\right) P\left(x_{t+1: n} \mid z_{t+1}=j, z_{t}=k\right) \\
& =\sum_{j} P\left(z_{t+1}=j \mid z_{t}=k\right) P\left(x_{t+1: n} \mid z_{t+1}=j\right) \\
& =\sum_{j} P\left(z_{t+1}=j \mid z_{t}=k\right) P_{\phi_{j}}\left(x_{t+1}\right) \cdot P\left(x_{t+2: n} \mid z_{t+1}=j\right)
\end{aligned}
$$

- This is the backward algorithm -- Time complexity for computing all $\left\{\beta_{t, k}\right\}$?

Forward-Backward algorithm - summary

Forward message: $\alpha_{t, k}=P_{\phi_{k}}\left(x_{t}\right) \cdot \sum_{j} A_{j k} \cdot \alpha_{t-1, j}$
Backward message: $\beta_{t, k}=\sum_{j} A_{k j} \cdot P_{\phi_{j}}\left(x_{t+1}\right) \cdot \beta_{t+1, j}$

Main tasks for HMM

- Task 1 [inference]: Given an HMM and the observation $x_{1: n}$, how likely is it to observe the given sequence? What is the posterior distribution of z_{t} for each t ?
- $p\left(x_{1: n}\right)$ => used for checking convergence, comparing various models, model selection, etc.
- $p\left(z_{t}=k \mid x_{1: n}\right), \forall t$
- Task 2 [inference - "decoding"]: Given an HMM and the observation $x_{1: n}$, what is the most likely hidden state sequence?
- i.e., $z_{1: n}^{*}=\arg \max _{z_{1: n}} p\left(z_{1: n} \mid x_{1: n}\right)$
- This gives you the ultimate answer to our speaker diarization task.
- Task 3 [learning]: Given the observation $x_{1: n}$, learn the HMM parameters.

Task 2: Most probable hidden state sequence

- Conceptually, a very simple problem:

$$
\hat{z}_{1: n}=\arg \max _{z_{1: n}} p\left(z_{1: n} \mid x_{1: n}\right)
$$

- But, similar to naively calculating $P\left(x_{1: n}\right)$, naïve implementation has exponential time complexity!
- Fortunately, the conditional independence structure of HMM admits an efficient computation!

Viterbi's algorithm (1967)

- $\hat{z}_{1: n}=\arg \max _{z_{1: n}} P\left(z_{1: n} \mid x_{1: n}\right)=\arg \max _{z_{1: n}} P\left(z_{1: n}, x_{1: n}\right)$
- $\omega_{t, k}:=\max _{z_{1: t-1}} P\left(x_{1: t}, z_{1: t-1}, z_{t}=k\right)$ for all $k \in[K]$
- Analogue of "forward variables" $\alpha_{t, k}=P\left(x_{1: t}, z_{t}=k\right)$
- Why are $\omega_{t, k}$'s useful?

- E.g. optimal $\hat{z}_{n}=\operatorname{argmax}_{k} \omega_{n, k}$
- How to compute $\omega_{t, k}$'s for every $t \in[n]$?
t-2
t-1
t+1
- Claim: $\omega_{t, k}=P_{\phi_{k}}\left(x_{t}\right) \max _{j} A_{j k} \omega_{t-1, j}$
- Proof: $\omega_{t, k}=\max _{z_{1: t-1}} P\left(x_{1: t}, z_{1: t-1}, z_{t}=k\right)$

$$
\begin{aligned}
& =\max _{j} \max _{z_{1: t-2}} P\left(x_{1: t-1}, z_{1: t-2}, z_{t-1}=j, x_{t}, z_{t}=k\right) \quad k=3 \\
& =\max _{j} \max _{z_{1: t-2}} P\left(x_{1: t-1}, z_{1: t-2}, z_{t-1}=j\right) P\left(x_{t}, z_{t}=k \mid z_{t-1}=j\right) \\
& \omega_{t-1, j}
\end{aligned}
$$

Viterbi's algorithm (cont'd)

$$
=\underset{z_{t}}{\operatorname{argmax}}\left(\max _{z_{1: t-1}} P\left(z_{1: t-1}, x_{1: t}, z_{t}\right) \cdot P\left(\hat{z}_{t+1} \mid z_{t}\right) P\left(x_{t+1: n} \mid \hat{z}_{t+1}\right)\right)
$$

$$
=\underset{j}{\operatorname{argmax}}\left(\max _{z_{1: t-1}} P\left(z_{1: t-1}, x_{1: t}, z_{t}=j\right) \cdot P\left(\hat{z}_{t+1} \mid z_{t}=j\right)\right)
$$

$$
=\underset{j}{\operatorname{argmax}}\left(\omega_{t, j} \cdot A_{j, \hat{z}_{t+1}}\right)
$$

This is exactly the optimal j in the definition of $\omega_{t+1, k}=P_{\phi_{k}}\left(x_{t+1}\right) \max _{j} A_{j k} \omega_{t, j}$ for $k=\hat{z}_{t+1}$

$$
\begin{aligned}
& \text { t-2 } \\
& \text {-2 } \\
& p\left(x_{t} \mid z_{t}\right), p\left(z_{t} \mid z_{t-1}\right)
\end{aligned}
$$

Backtracking

- Suppose $\hat{z}_{n}=3$
n-3
n-2

$$
\mathrm{n}-1
$$

n

- The entries in each cell (t, k) is the index j of the cell in the previous time step that induces optimal joint probability $\max _{z_{1: t-1}} P\left(x_{1: t}, z_{1: t-1}, z_{t}=k\right)$:

$$
\omega_{t, k}=P\left(x_{t} \mid z_{t}=k\right) \max _{j} A_{j k} \omega_{t-1, j}
$$

- $\hat{z}_{n}=3 \Rightarrow \hat{z}_{n-1}=2 \Rightarrow \hat{z}_{n-2}=3 \Rightarrow \hat{z}_{n-3}=1$

Implementation caveats

- When implementing the algorithm, working with probabilities can lead to numerical instabilities.
- We could even get $\omega_{t, k}=0$ in computers when $\omega_{t, k}$ becomes very small => this is common when the sequence length is >= 100 .
- Recommendation: always work in the log domain
- E.g., do not compute $\omega_{t, k} ;$ compute $\ln \omega_{t, k}$
- For stable computation of forward-backward algorithm, see (PRML, Bishop, 2006, Sect. 13.2.4)

Main tasks for HMM

- Task 1 [inference]: Given an HMM and the observation $x_{1: n}$, how likely is it to observe the given sequence? What is the posterior distribution of z_{t} for each t ?
- $p\left(x_{1: n}\right)$ => used for checking convergence, comparing various models, model selection, etc.
- $p\left(z_{t}=k \mid x_{1: n}\right), \forall t$
- Task 2 [inference - "decoding"]: Given an HMM and the observation $x_{1: n}$, what is the most likely hidden state sequence?
- i.e., $z_{1: n}^{*}=\arg \max _{z_{1: n}} p\left(z_{1: n} \mid x_{1: n}\right)$
- This gives you the ultimate answer to our speaker diarization task.
- Task 3 [learning]: Given the observation $x_{1: n}$, learn the HMM parameters.

Task 3: learning HMMs

- Naively, maximizing likelihood $P\left(x_{1: n} ; \Theta\right)=\sum_{z_{1: n}} P\left(x_{1: n}, z_{1: n} ; \Theta\right)$ is tricky
- Recall the MLE issues for GMMs
- Can we design a tractable algorithm for learning HMMs using the EM framework?
- Recall the EM algorithm:
- Repeat:
- E-step: calculate $P\left(z_{1: n} \mid x_{1: n} ; \Theta^{(t)}\right)$
- M-step: $\Theta^{(t+1)} \leftarrow \operatorname{argmax}_{\Theta} \sum_{z_{1: n}} P\left(z_{1: n} \mid x_{1: n} ; \Theta^{(t)}\right) \ln P\left(x_{1: n}, z_{1: n} ; \Theta\right)$

Learning HMMs with the EM algorithm

- Warmup: what is the MLE for HMM with observation $x_{1: n}$ and hidden states $z_{1: n}$?
- Likelihood: $\ln P\left(x_{1: n}, z_{1: n} ; \Theta\right)$

$$
\begin{aligned}
& =\ln P\left(z_{1} ; \pi\right)+\sum_{i=2}^{n} \ln P\left(z_{i} \mid z_{i-1} ; A\right)+\sum_{i=1}^{n} \ln P\left(x_{i} \mid z_{i} ; \phi\right) \\
& =\sum_{k} I\left(z_{1}=k\right) \ln \pi_{k}+\sum_{j} \sum_{k} \sum_{i} I\left(z_{i-1}=j, z_{i}=k\right) \ln A_{j k}+\sum_{k} \sum_{i} I\left(z_{i}=k\right) \ln P_{\phi_{k}}\left(x_{i}\right)
\end{aligned}
$$

- Each part can be maximized individually wrt π, A_{j} 's and ϕ_{k} 's
- Part 1: maximize $\ln P\left(z_{1} ; \pi\right)=\sum_{k} I\left(z_{1}=k\right) \ln \pi_{k}$

$$
\Rightarrow \hat{\pi}_{k}=I\left(z_{1}=k\right)
$$

- Part 2(j): maximize $\sum_{k}\left(\sum_{i} I\left(z_{i-1}=j, z_{i}=k\right)\right) \ln A_{j k}$ s.t. $A_{j} \in \Delta^{K-1}$

$$
\Rightarrow \hat{A}_{j, k}=\frac{\#\left\{i: z_{i-1}=j, z_{i}=k\right\}}{\#\left\{i: z_{i-1}=j\right\}}
$$

Learning HMMs with the EM algorithm (cont'd)

- Part 3 (k): maximize $\sum_{i} I\left(z_{i}=k\right) \ln P_{\phi_{k}}\left(x_{i}\right)$
- Optimal ϕ_{k} Depends on the emission model

- E.g. $P_{\phi}(x)=$ Categorical $(\phi)=>\phi_{k, l}=\frac{\#\left\{i: x_{i}=l, z_{i}=k\right\}}{\#\left\{i: z_{i}=k\right\}}$
- E.g. $P_{\phi}(x)=N(\phi, I) \Rightarrow \phi_{k}=\frac{\sum_{i: z_{i}=k} x_{i}}{\#\left\{i: z_{i}=k\right\}}$
- Summary - MLE with fully observed data:
- $\hat{\pi}_{k}=$ (empirical frequency of $z_{1}=k$)
- $\hat{A}_{j, k}=$ (empirical frequency of $z_{i}=k$ given $z_{i-1}=j$)
- $\hat{\phi}_{k}=\left(\right.$ MLE of $P_{\phi}(x)$ over $\left.\left\{\left(x_{i}, z_{i}\right): z_{i}=k\right\}\right)$

Learning HMMs with the EM algorithm (cont'd)

- Using EM algorithm for MLE with observation $x_{1: n}$ alone
- Given parameter in previous iteration $\Theta^{(\text {old })}$, what does the M-step look like?
- Intuition: the M-step performs MLE on a weighted collection of augmented sequences $\left(x_{1: n}, z_{1: n}\right)$, each with weight (multiplicity) $P\left(z_{1: n} \mid x_{1: n} ; \Theta^{(\mathrm{old})}\right)$
- Mental picture: $x_{1: n}$ induces K^{n} fully-observable sequences $\left(x_{1: n}, z_{1: n}\right)=>$ compute MLE on this giant weighted dataset
- $\hat{\pi}_{k}=$ (weighted empirical frequency of $\left.z_{1}=k\right)=P\left(z_{1}=k \mid x_{1: n} ; \Theta^{(\mathrm{old})}\right)$
- $\hat{A}_{j, k}=$ (weighted empirical frequency of $z_{i}=k$ given $\left.z_{i-1}=j\right)=\frac{\sum_{i} P\left(z_{i-1}=j, z_{i}=k \mid x_{1: n} ; \Theta^{(o l d)}\right)}{\sum_{i} P\left(z_{i-1}=j \mid x_{1: n} ; ;^{(\text {old })}\right)}$
- $\hat{\phi}_{k}=$ (weighted MLE of $P_{\phi}(x)$ over $\left.\left\{\left(x_{i}, z_{i}\right): z_{i}=k\right\}\right)=\operatorname{argmax}_{\phi} \sum_{i} P\left(z_{i}=k \mid x_{1: n} ; \Theta^{(o l d)}\right) \ln P_{\phi}\left(x_{i}\right)$

Learning HMMs with the EM algorithm (cont'd)

- Formal derivation of M-step:

$$
\begin{aligned}
& \operatorname{maximize}_{\Theta} Q\left(\Theta ; \Theta^{(o l d)}\right)=\sum_{z_{1: n}} P\left(z_{1: n} \mid x_{1: n} ; \Theta^{(\mathrm{old})}\right) \ln P\left(x_{1: n}, z_{1: n} ; \Theta\right) \\
& \sum_{k} I\left(z_{1}=k\right) \ln \pi_{k}+\sum_{j} \sum_{k} \sum_{i} I\left(z_{i-1}=j, z_{i}=k\right) \ln A_{j k}+\sum_{k} \sum_{i} I\left(z_{i}=k\right) \ln P_{\phi_{k}}\left(x_{i}\right)
\end{aligned}
$$

- Equivalent to:

$$
\begin{aligned}
\operatorname{maximize}_{\Theta} & \sum_{k} P\left(z_{1}=k \mid x_{1: n} ; \Theta^{(\mathrm{old})}\right) \ln \pi_{k} \\
+ & \sum_{j} \sum_{k} \sum_{i} P\left(z_{i-1}=j, z_{i}=k \mid x_{1: n} ; \Theta^{(\mathrm{old})}\right) \ln A_{j k} \\
+ & \sum_{k} \sum_{i} P\left(z_{i}=k \mid x_{1: n} ; \Theta^{(\mathrm{old})}\right) \ln P_{\phi_{k}}\left(x_{i}\right)
\end{aligned}
$$

- Again, each part can be maximized individually wrt π, A_{j} 's and ϕ_{k} 's

Learning HMMs with the EM algorithm (cont'd)

- The M-step requires access to the posterior distributions of (pairs of) hidden states at different time steps
- How to obtain them?

$$
\begin{aligned}
& \hat{\pi}_{k}=P\left(z_{1}=k \mid x_{1: n} ; \Theta^{(\text {old })}\right) \\
& \hat{A}_{j, k}=\frac{\sum_{i} P\left(z_{i-1}=j, z_{i}=k \mid x_{1: n} ; \Theta^{(o l d)}\right)}{\sum_{i} P\left(z_{i-1}=j \mid x_{1: n} ; \Theta^{\text {old })}\right)} \\
& \hat{\phi}_{k}=\operatorname{argmax}_{\phi} \sum_{i} P\left(z_{i}=k \mid x_{1: n} ; \Theta^{(o l d)}\right) \ln P_{\phi}\left(x_{i}\right)
\end{aligned}
$$

- Recall: the forward-backward algorithm can be used to give us $\gamma_{i, k}:=P\left(z_{i}=k \mid x_{1: n} ; \Theta^{(o l d)}\right)$
- How about $\xi_{i, j, k}:=P\left(z_{i-1}=j, z_{i}=k \mid x_{1: n} ; \Theta^{(o l d)}\right)$?
- Key observation: $P\left(z_{i-1}=j, z_{i}=k \mid x_{1: n}\right) \propto P\left(z_{i-1}=j, z_{i}=k, x_{1: n}\right)$

$$
\begin{aligned}
& =P\left(x_{1: i-1}, z_{i-1}=j, z_{i}=k, x_{i: n}\right) \\
& =P\left(x_{1: i-1}, z_{i-1}=j\right) P\left(z_{i}=k \mid z_{i-1}=j\right) P\left(x_{i: n} \mid z_{i}=k\right) \\
& =\alpha_{i-1, j} A_{j, k} P_{\phi}\left(x_{i}\right) \beta_{i, k}
\end{aligned}
$$

Learning HMMs with the EM algorithm - summary

- EM for HMM (Also known as the Baum-Welch algorithm):
- Repeat:
- E-step: (1) calculate $\gamma_{i, k}:=P\left(z_{i}=k \mid x_{1: n} ; \Theta^{(t)}\right)$
(2) calculate $\xi_{i, j, k}:=P\left(z_{i-1}=j, z_{i}=k \mid x_{1: n} ; \Theta^{(t)}\right)$ using the forward-backward algorithm

- M-step:
(1) $\hat{\pi}_{k}=P\left(z_{1}=k \mid x_{1: n} ; \Theta^{\text {(old) })}\right.$
(2) $\hat{A}_{j, k}=\frac{\sum_{i} P\left(z_{i-1}=j, z_{i}=k \mid x_{1: n} ; \Theta^{(o l d)}\right)}{\sum_{i} P\left(z_{i-1}=j \mid x_{1: n} ; \Theta^{(o l d)}\right)}$
(3) $\hat{\phi}_{k}=\operatorname{argmax}_{\phi} \sum_{i} P\left(z_{i}=k \mid x_{1: n} ; \Theta^{(o l d)}\right) \ln P_{\phi}\left(x_{i}\right)$

- Update parameters: $\Theta^{(t+1)} \leftarrow(\hat{\pi}, \hat{A}, \hat{\phi})$

HMMs: closing remarks

- Alternative algorithms for learning HMMs
- Method of Moments
- Provable guarantees if no model misspecification

Computer Science > Machine Learning

[Submitted on 26 Nov 2008 (v1), last revised 6 Jul 2012 (this version, v6)]
A Spectral Algorithm for Learning Hidden Markov Models
Daniel Hsu, Sham M. Kakade, Tong Zhang

Computer Science > Machine Learning

SSubmitted on 29 Oct 2012 (v1), last revised 13 Nov 2014 (this version, v4)
Tensor decompositions for learning latent variable models Anima Anandkumar, Rong Ge, Daniel Hsu, Sham M. Kakade, Matus Telgarsky

- Linear dynamical systems: x_{t} and z_{t} 's are continuous and satisfies joint Gaussian distribution
- Kalman filter
- Widely used in control applications
- Dynamic Bayesian networks: generalizing HMMs to structured hidden states and observations

Summary

- d-separation
- HMM for modeling and inference on sequential data
- Viterbi algorithm for finding the most likely sequence
- EM for learning the parameters (forward-backward algorithm)

Next lecture (11/7)

- Neural networks; the backpropagation algorithm
- Assigned reading: CIML 10.1-10.2

