
CSC 580 Principles of Machine Learning

12 A closer look at PGMs; Hidden Markov Models

Chicheng Zhang

Department of Computer Science

1

*slides credit: built upon CSC 580 Fall 2021 lecture slides by Kwang-Sung Jun

Background: A deeper look at conditional independence

• Recall the graphical representation (plate notation) specifies the dependency

• More precisely, it specifies how a joint distribution can be factored in a structured way

• Remark: We focus on directed graphical models (Bayes nets)

• another world: undirected models

• Intro example:

• 𝑃 𝐴 = 𝑎, 𝐵 = 𝑏, 𝐶 = 𝑐 = 𝑃 𝐶 = 𝑐 𝐴 = 𝑎, 𝐵 = 𝑏 ⋅ 𝑃(𝐴 = 𝑎, 𝐵 = 𝑏)

= 𝑃 𝐶 = 𝑐 𝐴 = 𝑎, 𝐵 = 𝑏 ⋅ 𝑃 𝐵 = 𝑏 𝐴 = 𝑎 ⋅ 𝑃(𝐴 = 𝑎)

• Graphical representation:

For each conditional distribution, add direct links from the nodes being

conditioned to the node whose distribution is of interest

2

Warning: notation convention

• Notation easily gets overwhelming, no easy way out.

• Fully-specified notation: explicit, but takes too long to process

• Simplified notation: concise, but takes time to train yourself to be familiar

• Probabilistic models: For fully-specified notation, we always need to specify the random variable
and the value that it takes separately.

• E.g. 𝑃 𝐴 = 𝑎, 𝐵 = 𝑏, 𝐶 = 𝑐 = 𝑃 𝐶 = 𝑐 𝐴 = 𝑎, 𝐵 = 𝑏 ⋅ 𝑃(𝐴 = 𝑎, 𝐵 = 𝑏)

= 𝑃 𝐶 = 𝑐 𝐴 = 𝑎, 𝐵 = 𝑏 ⋅ 𝑃 𝐵 = 𝑏 𝐴 = 𝑎 ⋅ 𝑃(𝐴 = 𝑎)

• Simplified notation: 𝑃 𝑎, 𝑏, 𝑐 = 𝑃 𝑐 𝑎, 𝑏 ⋅ 𝑃(𝑎, 𝑏)

= 𝑃 𝑐 𝑎, 𝑏 ⋅ 𝑃 𝑏 𝑎 ⋅ 𝑃(𝑎)

• i.e. reserve symbol 𝑎 for values taken by random variable 𝐴 (same for 𝐵, 𝐶)

• We will use simplified notation throughout this lecture

3

PGM: flexible modeling of data distributions

• Q: what kind of distribution does this graph represent?

• 𝑃 𝑥1, 𝑥2, … , 𝑥7 = 𝑃 𝑥1 𝑃 𝑥2 𝑃 𝑥3 𝑃 𝑥4 𝑥1, 𝑥2, 𝑥3 ⋅

𝑃 𝑥5 𝑥1, 𝑥3 𝑃 𝑥6 𝑥4 𝑃(𝑥7 ∣ 𝑥4, 𝑥5)

• For a general directed acyclic graph (DAG) 𝐺 with 𝐾 nodes 𝑥1, … , 𝑥𝐾,

𝑃 𝑥1, 𝑥2, … , 𝑥𝐾 = ς𝑘=1
𝐾 𝑃(𝑥𝑘 ∣ pa𝑘),

• Fact: this implicitly implies 𝑃 𝑥𝑘 pa𝑘 = 𝑃(𝑥𝑘 ∣ 𝑥1, … , 𝑥𝑘−1), i.e. 𝑥𝑘 ⫫ 𝑥1, … , 𝑥𝑘−1 ∖ pa𝑘 ∣ pa𝑘
• E.g. 𝑥6 ⫫ {𝑥1, 𝑥2, 𝑥3, 𝑥5} ∣ 𝑥4

• Edges oftentimes encode causal relationships between the node variables

4

Parent nodes of 𝑥𝑘 in 𝐺

Bayes net = DAG + Conditional probability table

• 𝑃 𝑥1, 𝑥2, … , 𝑥𝐾 = ς𝑘=1
𝐾 𝑃(𝑥𝑘 ∣ pa𝑘) <- also need to specify each 𝑃(𝑥𝑘 ∣ pa𝑘) respectively

• Aside: 𝐽 ⫫ 𝐵, 𝐸 ∣ 𝐴 => the effect of B, E to John’s calling is “completely captured” in Alarm status

5http://aima.cs.berkeley.edu/

PGM: parsimonious representation of distributions

• Suppose each 𝑥1, 𝑥2, … , 𝑥𝐾 take binary values

• Naively representing 𝑃(𝑥1, 𝑥2, … , 𝑥𝐾) requires 2𝐾 entries

• With graphical model representation

𝑃 𝑥1, 𝑥2, … , 𝑥𝐾 = ς𝑘=1
𝐾 𝑃(𝑥𝑘 ∣ pa𝑘)

Each 𝑃(𝑥𝑘 ∣ pa𝑘) takes 2|pa𝑘|+1 entries

so total representation complexity ≤ σ𝑘 2
|pa𝑘|+1 ≤ 2

𝑂 max
𝑘

|pa𝑘|

much smaller than 2𝐾 if max
𝑘

pa𝑘 ≪ 𝐾 (we will see that this happens in many natural PGMs)

6

Three landmark examples

• tail-to-tail

• Head-to-tail

• head-to-head

7

Ex 1: Tail-to-tail (common cause)

• 𝑃 𝑎, 𝑏, 𝑐 = 𝑃 𝑐 𝑃 𝑎 𝑐 𝑃(𝑏 ∣ 𝑐)

• 𝑃 𝑎, 𝑏 = σ𝑐 𝑃 𝑐 𝑃 𝑎 𝑐 𝑃(𝑏 ∣ 𝑐) and in general it does not factorize

=> It is generally not true that 𝑎 ⫫ 𝑏

(e.g. John’s calling is correlated with Mary’s calling)

• However, 𝑃 𝑎, 𝑏 ∣ 𝑐 =
𝑃 𝑎,𝑏,𝑐

𝑃(𝑐)
= 𝑃 𝑎 𝑐 𝑃(𝑏 ∣ 𝑐)

=> 𝑎 ⫫ 𝑏 ∣ 𝑐

8

Ex 2: head-to-tail

• 𝑃 𝑎, 𝑏, 𝑐 = 𝑃 𝑎 𝑃 𝑐 𝑎 𝑃(𝑏 ∣ 𝑐)

• 𝑃 𝑎, 𝑏 = 𝑃 𝑎 σ𝑐 𝑃 𝑐 𝑎 𝑃 𝑏 𝑐 = 𝑃 𝑎 ⋅ 𝑃(𝑏 ∣ 𝑎)

=> It is generally not true that 𝑎 ⫫ 𝑏

(e.g. “Cloudy” is correlated with “Wet grass”)

• However, 𝑃 𝑎, 𝑏 ∣ 𝑐 =
𝑃 𝑎,𝑏,𝑐

𝑃(𝑐)
=

𝑃 𝑎 𝑃 𝑐 𝑎 𝑃(𝑏∣𝑐)

𝑃(𝑐)
= 𝑃 𝑎 𝑐 𝑃(𝑏 ∣ 𝑐)

=> 𝑎 ⫫ 𝑏 ∣ 𝑐

• Another important example: Markov chain (for time series data)

9https://www.cs.odu.edu/~zeil/cs795ML/webcourse/Slides/graphical/handout.pdf

Ex 3: head-to-head (common effect)

• 𝑃 𝑎, 𝑏, 𝑐 = 𝑃 𝑎 𝑃(𝑏)𝑃(𝑐 ∣ 𝑎, 𝑏)

• 𝑃 𝑎, 𝑏 = σ𝑐 𝑃 𝑎 𝑃 𝑏 𝑃 𝑐 𝑎, 𝑏 = 𝑃 𝑎 𝑃(𝑏)

=> 𝑎 ⫫ 𝑏

• However, 𝑃 𝑎, 𝑏 ∣ 𝑐 =
𝑃(𝑎,𝑏,𝑐)

𝑃(𝑐)
=

𝑃 𝑎 𝑃 𝑏 𝑃(𝑐∣𝑎,𝑏)

𝑃(𝑐)
does not necessarily factorize

=> It is generally not true that 𝑎 ⫫ 𝑏 ∣ 𝑐

10

Ex 3: head-to-head (cont’d)

• If you pick an applicant randomly, the GRE and GPA is
independent (according to our model)

• However, if you randomly pick an applicant who was accepted,
then the low GRE may indicate that she had a high GPA.

• Otherwise the student would have been rejected.

• This is called the explain-away phenomenon.

• Another example:

• 𝐵 and 𝐸 are dependent, conditioned on 𝐴

• It is also true that 𝐵 and 𝐸 are dependent, conditioned on
descendants of 𝐴 (e.g. 𝐽)

11

GRE GPA

Admission: Y/N

Summary

12

• tail-to-tail

• Head-to-tail

• head-to-head

No Yes

No Yes

Yes No

Next lecture (10/31)

• Markov models; Hidden Markov models (HMMs)

• Assigned reading: Prof. Jason Pacheco’s PGM slides:
https://www2.cs.arizona.edu/~pachecoj/courses/csc535_fall20/lectures/pgms.pdf

• Additional reading: Bishop, “Pattern Recognition and Machine Learning”, Section 8.1-8.2

13

D-separation
• Systematic Rules for determining conditional independence given a directed acyclic graph.

• Answer questions of the form: Is a ⫫ b | c true or false ?

• [Def] 𝑏 is a descendent of 𝑎 if there exists a directed path from 𝑎 to 𝑏.

• => 𝑎 is a descendent of 𝑎 by definition.

• [Def] An undirected path p from a to b is blocked given c if it includes a node:

• (a) the arrows on p meet either head-to-tail or tail-to-tail at the node, and the node is c, OR

• (b) the arrows meet head-to-head at the node, and neither the node nor any of its descendants is c

“Conditioned on c being observed, information can flow from a to b through path p”

• [Def] (D-separation)
𝑎 is d-separated from 𝑏 given 𝑐 if every undirected path between a and b is blocked given c.

• [Thm] If a is d-separated from b given c, then 𝑎 ⫫ 𝑏 | 𝑐.

14

Blockage: pictorial illustration

15

An undirected path p is blocked given c if it includes a node:
(1) the arrows on p meet either head-to-tail or tail-to-tail at
the node, and the node is c, or
(2) the arrows meet head-to-head at the node, and neither
the node nor any of its descendant is c

https://www2.cs.arizona.edu/~pachecoj/courses/csc535_fall20/lectures/pgms.pdf

D-separation examples

• 𝑎 to 𝑏 has only one path 𝑝 = 𝑎 − 𝑒 − 𝑓 − 𝑏

• In (a): Is 𝑎 ⫫ 𝑏 | 𝑐? No, 𝑝 is not blocked given 𝑐

• In (b): Is 𝑎 ⫫ 𝑏 | 𝑓? Yes, 𝑝 is blocked given 𝑓

• Is 𝑎 ⫫ 𝑏 ?

16

An undirected path p is blocked given c if it includes a node:
(1) the arrows on p meet either head-to-tail or tail-to-tail at
the node, and the node is c, or
(2) the arrows meet head-to-head at the node, and neither
the node nor any of its descendant is c

D-separation: general definition for node sets

• Q: Is A ⫫ B | C true or false ?

• Each of A,B,C is a set of random variables

• [Def] An undirected path p from a to b is blocked given 𝐶 if it includes a node:

• (a) the arrows on p meet either head-to-tail or tail-to-tail at the node, and the node is in 𝐶

• (b) the arrows meet head-to-head at the node, and neither the node nor any of its descendants is in 𝐶

• [Def] (D-separation)
𝐴 is d-separated from 𝐵 given 𝐶 if every undirected path between 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 is blocked given 𝐶.

• [Thm] If 𝐴 is d-separated from 𝐵 given 𝐶, then 𝐴 ⫫ 𝐵 | 𝐶.

17

D-separation: an exercise

• Is 𝐺 ⫫ 𝐴 - equivalently, 𝐺 ⫫ 𝐴 ∣ ∅?

• Yes, G-H-D-E-C-A is blocked by E

G-F-E-C-A is blocked by F

• Is 𝐸 ⫫ 𝐻 ∣ {𝐷, 𝐺}?

• Yes, E-D-H is blocked by D; E-F-G-H is blocked by F (or G)

• Is 𝐸 ⫫ 𝐻 ∣ {𝐶, 𝐷, 𝐹}?

• No, although E-D-H is blocked by D, E-F-G-H is not blocked

18

Sequential data

• So far, we have dealt with IID data: 𝑧𝑖~𝒟

• What if the data has dependency between 𝑧𝑖 and 𝑧𝑗?

• E.g., sequentially generated: 𝑧𝑖 | 𝑧1:𝑖−1 ~ 𝐷 Θ = 𝑓 𝑧1:𝑖−1
• Notation: 𝑥1:𝑛 means 𝑥1, . . , 𝑥𝑛

• Examples:

• Spoken language: 𝑧1:𝑛, 𝑧𝑡 ∈ 𝑊 : word index

• What word you say depends on what you just said; ‘context’.

• Human movement, say soccer: 𝑧1:𝑛=> video (sequence of pictures, say every 1/24 second)

• It’s a video, so the dependency is natural (e.g., you cannot teleport).

• Biology: amino acid/protein sequence.

19

Guiding example: Speaker diarization

• You have recorded a meeting happened with 𝐾
people. Can we segment it according to speakers’
identities?

20

• Data: audio sequence 𝑥1:𝑛,

• 𝑥𝑡 ∈ ℝ𝑑 auditory features during a short time interval (e.g., 100ms).

• Goal: Segment the audio with contiguous blocks where each block is assigned a speaker index.

• i.e., infer 𝑧𝑡 ∈ [𝐾] indicating who was speaking at time point t.

• Let’s call 𝑧𝑡 a state.

• Key characteristic: sequential dependency!

• stickiness: if you spoke at time t, you are likely to be speaking at time t+1.

• transition: there are more frequent transition pairs than other pairs. (the boss keeps correcting
a newbie)

Hidden Markov model (HMM)
• Graphical representation:

• The key characteristic: Markovian assumption

• Only model the first-order dependency

• Possible to add the dependency up to 𝜏 past 𝑧𝑡’s, but remember the bias-variance tradeoff.

• Further, the computational complexity.

• Productive mindset: try a simple model, and fix it only if it does not work.

• In fact, we can work with 𝑀 sequences: observations 𝑥𝑚,𝑡 𝑚∈ 𝑀 ,𝑡∈[𝑁]

• hidden states 𝑧𝑚,𝑡 𝑚∈ 𝑀 ,𝑡∈[𝑁]
unobserved

• 𝑁 can even be different for each 𝑚.

• But we will mainly work with the case of M=1.

21

HMM – generative story

• The joint distribution over (observations, hidden states)

𝑃 𝑥1:𝑛, 𝑧1:𝑛 = 𝑃 𝑧1 ⋅ෑ

𝑖=2

𝑛

𝑃 𝑧𝑖 𝑧𝑖−1 ⋅ෑ

𝑖=1

𝑛

𝑃(𝑥𝑖 ∣ 𝑧𝑖)

• Corresponding generative story:

• 𝑧1 ∼ Categorical(𝜋)

• For 𝑖 = 2,… , 𝑛:

• Draw 𝑧𝑖 ∼ Categorical(𝐴𝑧𝑖−1)

• For 𝑖 = 1, 2,… , 𝑛:

• Draw 𝑥𝑖 ∼ 𝑃𝜙𝑧𝑖
(⋅)

• e.g. 𝑃𝜙 = Categorical(𝜙), or 𝑃𝜙 = 𝑁(𝜙, 𝐼)

22

𝑧1

𝑥1

𝑧2

𝑥2

𝑧𝑛−1

𝑥𝑛−1

𝑧𝑛

𝑥𝑛

…

𝐴 =
− 𝐴1 −
…

− 𝐴𝐾 −
, 𝜙 =

− 𝜙1 −
…

− 𝜙𝐾 −

HMM model specification

• Model parameters Θ is composed of:

• Initial distribution 𝜋

• Transition probability 𝐴

• Emission distribution parameter 𝜙

• Likelihood: 𝑃 𝑥1:𝑛, 𝑧1:𝑛; Θ = 𝑃 𝑧1; 𝜋 ⋅ ς𝑖=2
𝑛 𝑃 𝑧𝑖 𝑧𝑖−1; 𝐴 ⋅ ς𝑖=1

𝑛 𝑃(𝑥𝑖 ∣ 𝑧𝑖; 𝜙)

• Marginal likelihood 𝑃 𝑥1:𝑛; Θ = σ𝑧1:𝑛 𝑃 𝑥1:𝑛, 𝑧1:𝑛; Θ

• Comparison to GMM

• 𝑧𝑖’s has the same role as 𝑘𝑖’s

• HMM allows temporal dependence of hidden states

• HMM’s emission distribution is not necessarily Gaussian

23

𝑧1

𝑥1

𝑧2

𝑥2

𝑧𝑛−1

𝑥𝑛−1

𝑧𝑛

𝑥𝑛

…

HMM example

24

Gaussian emission model 𝑃 𝑥 𝑧 = 𝑘; 𝜙 = 𝑃𝜙𝑘
𝑥 = 𝑁(𝜇𝑘, Σ𝑘)

Transition probability 𝐴 =
.9 .05 .05
.05 .9 .05
.05 .05 .9

HMM: key conditional independence structure

• Claim: conditioned on 𝑧𝑡, the following three groups of r.v.’s,

𝑥, 𝑧 1:𝑡−1, 𝑥𝑡 , 𝑥, 𝑧 𝑡+1:𝑛, are independent

• How to show A, B, C are independent?

• One way: show A ⫫ B and C ⫫ (A,B)

• Checking conditional independence by d-separation:

𝑥, 𝑧 1:𝑡−1 ⫫ 𝑥𝑡 ∣ 𝑧𝑡
𝑥, 𝑧 1:𝑡−1, 𝑥𝑡 ⫫ 𝑥, 𝑧 𝑡+1:𝑛 ∣ 𝑧𝑡

• Consequences: e.g. 𝑃 𝑥𝑡 𝑧𝑡 , 𝑥1:𝑡−1 = 𝑃 𝑥𝑡 𝑧𝑡 , 𝑃 𝑧𝑡+1 𝑧𝑡 , 𝑥1:𝑡−1 = 𝑃 𝑧𝑡+1 𝑧𝑡

25

𝑧𝑡

𝑥𝑡

𝑧1

𝑥1

𝑧𝑡−1

𝑥𝑡−1

𝑧𝑡+1

𝑥𝑡+1

𝑧𝑛

𝑥𝑛

… …

Main tasks for HMM

• Task 1 [inference]: Given an HMM and the observation 𝑥1:𝑛, how likely is it to observe the given
sequence? What is the posterior distribution of 𝑧𝑡 for each 𝑡?

• 𝑝(𝑥1:𝑛) => used for checking convergence, comparing various models, model selection, etc.

• 𝑝 𝑧𝑡 = 𝑘 𝑥1:𝑛), ∀𝑡

• Task 2 [inference – “decoding”]: Given an HMM and the observation 𝑥1:𝑛, what is the most likely
hidden state sequence?

• i.e., 𝑧1:𝑛
∗ = argmax

𝑧1:𝑛
𝑝 𝑧1:𝑛 𝑥1:𝑛)

• This gives you the ultimate answer to our speaker diarization task.

• Task 3 [learning]: Given the observation 𝑥1:𝑛, learn the HMM parameters.

26

Task 1: inference

• Naively, calculating 𝑃 𝑥1:𝑛 = σ𝑧1:𝑛 𝑃 𝑥1:𝑛, 𝑧1:𝑛 takes time exponential in 𝑛
• Can we do better?

• Key observation: can use dynamic programming to save computation

• Subproblem: compute 𝑃 𝑥1:𝑡 for every 𝑡?

• A slightly different subproblem

𝑃 𝑥1:𝑡 , 𝑧𝑡 = 𝑘 = 𝑃𝜙𝑘
(𝑥𝑡) ⋅ 𝑃 𝑥1:𝑡−1, 𝑧𝑡 = 𝑘

= 𝑃𝜙𝑘
(𝑥𝑡) ⋅ σ𝑗 𝑃 𝑥1:𝑡−1, 𝑧𝑡−1 = 𝑗, 𝑧𝑡 = 𝑘

= 𝑃𝜙𝑘
(𝑥𝑡) ⋅ σ𝑗𝑃 𝑧𝑡 = 𝑘 ∣ 𝑥1:𝑡−1, 𝑧𝑡−1 = 𝑗 ⋅ 𝑃 𝑥1:𝑡−1, 𝑧𝑡−1 = 𝑗

= 𝑃𝜙𝑘
(𝑥𝑡) ⋅ σ𝑗𝐴𝑗𝑘 ⋅ 𝑃 𝑥1:𝑡−1, 𝑧𝑡−1 = 𝑗

• Initial condition: 𝛼1,𝑘 = 𝑃 𝑥1, 𝑧1 = 𝑘 = 𝑃𝜙𝑘
(𝑥1) ⋅ 𝜋𝑘

• Time complexity for computing all 𝛼𝑡,𝑘 : 𝑂(𝑛 𝐾2) – forward algorithm

27

𝑧1

𝑥1

𝑧2

𝑥2

𝑧𝑛−1

𝑥𝑛−1

𝑧𝑛

𝑥𝑛

…

𝛼𝑡−1,𝑗

𝛼𝑡,𝑘

𝛼1,𝑘 𝛼2,𝑘 𝛼𝑛,𝑘

Next lecture (11/2)

• Inference in HMMs; Learning in HMMs: Expectation-Maximization

• Assigned reading: Prof. Jason Pacheco’s slides on Dynamic Systems:
https://www2.cs.arizona.edu/~pachecoj/courses/csc535_fall20/lectures/dynamicalsys.pdf

• HW3 will be released soon

28

https://www2.cs.arizona.edu/~pachecoj/courses/csc535_fall20/lectures/dynamicalsys.pdf

Announcements

• HW3 is up (due 11/16)

• Please review my feedback on your project proposals

29

Task 1: inference (cont’d)

• How to compute 𝑝 𝑧𝑡 = 𝑘 𝑥1:𝑛), ∀𝑡 ?

• It suffices to compute 𝑝 𝑧𝑡 = 𝑘, 𝑥1:𝑛 for all 𝑘

=> 𝑝 𝑧𝑡 = 𝑘 𝑥1:𝑛) =
𝑝 𝑧𝑡=𝑘,𝑥1:𝑛

𝑝 𝑥1:𝑛
=

𝑝 𝑧𝑡=𝑘,𝑥1:𝑛

σ𝑗 𝑝 𝑧𝑡=𝑗,𝑥1:𝑛

• Forward algorithm gives us: 𝛼𝑡,𝑘 = 𝑃 𝑥1:𝑡 , 𝑧𝑡 = 𝑘

• Key observation: 𝑥1:𝑡 ⫫ 𝑥𝑡+1:𝑛 ∣ 𝑧𝑡
 𝑝 𝑧𝑡 = 𝑘, 𝑥1:𝑛 = 𝑝 𝑧𝑡 = 𝑘, 𝑥1:𝑡 ⋅ 𝑝 𝑥𝑡+1:𝑛 ∣ 𝑧𝑡 = 𝑘, 𝑥1:𝑡

= 𝛼𝑡,𝑘 ⋅ 𝑝 𝑥𝑡+1:𝑛 ∣ 𝑧𝑡 = 𝑘

• Define 𝛽𝑡,𝑘:= 𝑝 𝑥𝑡+1:𝑛 ∣ 𝑧𝑡 = 𝑘 . Can we compute it efficiently?

30

𝑧1

𝑥1

𝑧2

𝑥2

𝑧𝑛−1

𝑥𝑛−1

𝑧𝑛

𝑥𝑛

…

Task 1: inference (cont’d)

• 𝛽𝑡,𝑘 ≔ 𝑃 𝑥𝑡+1:𝑛 ∣ 𝑧𝑡 = 𝑘

• Can also compute it using dynamic programming

• Observe: 𝛽𝑛,𝑘 = 1

• Claim: 𝛽𝑡,𝑘 = σ𝑗=1
𝐾 𝐴𝑘𝑗 𝑃𝜙𝑗

𝑥𝑡+1 𝛽𝑡+1,𝑗

• Proof:

𝑃 𝑥𝑡+1:𝑛 ∣ 𝑧𝑡 = 𝑘 = σ𝑗 𝑃 𝑥𝑡+1:𝑛, 𝑧𝑡+1 = 𝑗 ∣ 𝑧𝑡 = 𝑘

= σ𝑗 𝑃 𝑧𝑡+1 = 𝑗 ∣ 𝑧𝑡 = 𝑘 𝑃(𝑥𝑡+1:𝑛 ∣ 𝑧𝑡+1 = 𝑗, 𝑧𝑡 = 𝑘)

= σ𝑗 𝑃 𝑧𝑡+1 = 𝑗 ∣ 𝑧𝑡 = 𝑘 𝑃(𝑥𝑡+1:𝑛 ∣ 𝑧𝑡+1 = 𝑗)

= σ𝑗 𝑃 𝑧𝑡+1 = 𝑗 ∣ 𝑧𝑡 = 𝑘 𝑃𝜙𝑗
(𝑥𝑡+1) ⋅ 𝑃(𝑥𝑡+2:𝑛 ∣ 𝑧𝑡+1 = 𝑗)

• This is the backward algorithm -- Time complexity for computing all 𝛽𝑡,𝑘 ?

31

𝑧1

𝑥1

𝑧2

𝑥2

𝑧𝑛−1

𝑥𝑛−1

𝑧𝑛

𝑥𝑛

…

Forward-Backward algorithm - summary

32

Forward message: 𝛼𝑡,𝑘 = 𝑃𝜙𝑘
(𝑥𝑡) ⋅ σ𝑗 𝐴𝑗𝑘 ⋅ 𝛼𝑡−1,𝑗

Backward message: 𝛽𝑡,𝑘 = σ𝑗𝐴𝑘𝑗 ⋅ 𝑃𝜙𝑗
𝑥𝑡+1 ⋅ 𝛽𝑡+1,𝑗

𝑧1

𝑥1

𝑧2

𝑥2

𝑧𝑛−1

𝑥𝑛−1

𝑧𝑛

𝑥𝑛

…
𝛽2,𝑘 𝛽𝑛−1,𝑘 𝛽𝑛,𝑘

𝛼1,𝑘 𝛼2,𝑘 𝛼𝑛−1,𝑘 𝛼𝑛,𝑘

𝛽1,𝑘

Main tasks for HMM

• Task 1 [inference]: Given an HMM and the observation 𝑥1:𝑛, how likely is it to observe the given
sequence? What is the posterior distribution of 𝑧𝑡 for each 𝑡?

• 𝑝(𝑥1:𝑛) => used for checking convergence, comparing various models, model selection, etc.

• 𝑝 𝑧𝑡 = 𝑘 𝑥1:𝑛), ∀𝑡

• Task 2 [inference – “decoding”]: Given an HMM and the observation 𝑥1:𝑛, what is the most likely
hidden state sequence?

• i.e., 𝑧1:𝑛
∗ = argmax

𝑧1:𝑛
𝑝 𝑧1:𝑛 𝑥1:𝑛)

• This gives you the ultimate answer to our speaker diarization task.

• Task 3 [learning]: Given the observation 𝑥1:𝑛, learn the HMM parameters.

33

Task 2: Most probable hidden state sequence

• Conceptually, a very simple problem: Ƹ𝑧1:𝑛= argmax
𝑧1:𝑛

𝑝 𝑧1:𝑛 𝑥1:𝑛)

• But, similar to naively calculating 𝑃 𝑥1:𝑛 , naïve implementation has exponential time complexity!

• Fortunately, the conditional independence
structure of HMM admits an efficient computation!

34

t=1 t=2 t=3 t=4

Viterbi’s algorithm (1967)

• Ƹ𝑧1:𝑛= argmax
𝑧1:𝑛

𝑃 𝑧1:𝑛 𝑥1:𝑛) = argmax
𝑧1:𝑛

𝑃(𝑧1:𝑛, 𝑥1:𝑛)

• 𝜔𝑡,𝑘 ≔ max
𝑧1:𝑡−1

𝑃(𝑥1:𝑡, 𝑧1:𝑡−1, 𝑧𝑡 = 𝑘) for all 𝑘 ∈ [𝐾]

• Analogue of ``forward variables’’ 𝛼𝑡,𝑘 = 𝑃(𝑥1:𝑡, 𝑧𝑡 = 𝑘)

• Why are 𝜔𝑡,𝑘’s useful?

• E.g. optimal Ƹ𝑧𝑛 = argmax𝑘 𝜔𝑛,𝑘

• How to compute 𝜔𝑡,𝑘’s for every 𝑡 ∈ 𝑛 ?

• Claim: 𝜔𝑡,𝑘 = 𝑃𝜙𝑘
(𝑥𝑡)max

𝑗
𝐴𝑗𝑘 𝜔𝑡−1,𝑗

• Proof: 𝜔𝑡,𝑘 = max
𝑧1:𝑡−1

𝑃(𝑥1:𝑡 , 𝑧1:𝑡−1, 𝑧𝑡 = 𝑘)

= max
𝑗

max
𝑧1:𝑡−2

𝑃(𝑥1:𝑡−1, 𝑧1:𝑡−2, 𝑧𝑡−1 = 𝑗, 𝑥𝑡 , 𝑧𝑡 = 𝑘)

= max
𝑗

max
𝑧1:𝑡−2

𝑃 𝑥1:𝑡−1, 𝑧1:𝑡−2, 𝑧𝑡−1 = 𝑗 𝑃(𝑥𝑡 , 𝑧𝑡 = 𝑘 ∣ 𝑧𝑡−1 = 𝑗)

35

t-2 t-1 t t+1

𝑝 𝑥𝑡 𝑧𝑡 , 𝑝 𝑧𝑡 𝑧𝑡−1

𝜔𝑡−1,1

𝜔𝑡−1,2

𝜔𝑡−1,3

𝜔𝑡,1

𝜔𝑡,2

𝜔𝑡−1,𝑗 𝐴𝑗𝑘𝑃𝜙𝑘
(𝑥𝑡)

Viterbi’s algorithm (cont’d)

• Suppose we would like to recover Ƹ𝑧𝑡 for every 𝑡

• Observe: Ƹ𝑧1:𝑡 =argmax
𝑧1:𝑡

𝑃 𝑧1:𝑡, Ƹ𝑧𝑡+1:𝑛, 𝑥1:𝑛

Therefore,

• For 𝑡 = 𝑛, Ƹ𝑧𝑛 =argmax
𝑧𝑛

max
𝑧1:𝑛−1

𝑃 𝑧1:𝑛−1, 𝑧𝑛, 𝑥1:𝑛 =argmax
𝑗

𝜔𝑛,𝑗

• For 𝑡 ≤ 𝑛 − 1:

Ƹ𝑧𝑡 =argmax
𝑧𝑡

max
𝑧1:𝑡−1

𝑃 𝑧1:𝑡−1, 𝑧𝑡 , Ƹ𝑧𝑡+1:𝑛, 𝑥1:𝑛

= argmax
𝑧𝑡

max
𝑧1:𝑡−1

𝑃 𝑧1:𝑡−1, 𝑥1:𝑡 , 𝑧𝑡 ⋅ 𝑃 Ƹ𝑧𝑡+1 𝑧𝑡 𝑃(𝑥𝑡+1:𝑛 ∣ Ƹ𝑧𝑡+1)

= argmax
𝑗

max
𝑧1:𝑡−1

𝑃 𝑧1:𝑡−1, 𝑥1:𝑡 , 𝑧𝑡 = 𝑗 ⋅ 𝑃 Ƹ𝑧𝑡+1 𝑧𝑡 = 𝑗

= argmax
𝑗

𝜔𝑡,𝑗 ⋅ 𝐴𝑗, Ƹ𝑧𝑡+1

This is exactly the optimal 𝑗 in the definition of 𝜔𝑡+1,𝑘 = 𝑃𝜙𝑘
(𝑥𝑡+1)max

𝑗
𝐴𝑗𝑘 𝜔𝑡,𝑗 for 𝑘 = Ƹ𝑧𝑡+1

36

t-2 t-1 t t+1

𝑝 𝑥𝑡 𝑧𝑡 , 𝑝 𝑧𝑡 𝑧𝑡−1

𝜔𝑡−1,1

𝜔𝑡−1,2

𝜔𝑡−1,3

𝜔𝑡,1

𝜔𝑡,2

Backtracking

• Suppose Ƹ𝑧𝑛 = 3

• The entries in each cell (𝑡, 𝑘) is the index 𝑗 of the cell

in the previous time step that induces optimal

joint probability max
𝑧1:𝑡−1

𝑃(𝑥1:𝑡, 𝑧1:𝑡−1, 𝑧𝑡 = 𝑘):

𝜔𝑡,𝑘 = 𝑃 𝑥𝑡 𝑧𝑡 = 𝑘 max
𝑗

𝐴𝑗𝑘 𝜔𝑡−1,𝑗

• Ƹ𝑧𝑛 = 3 => Ƹ𝑧𝑛−1 = 2 => Ƹ𝑧𝑛−2 = 3 => Ƹ𝑧𝑛−3 = 1

37

n-3 n-2 n-1 n

𝑝 𝑥𝑡 𝑧𝑡 , 𝑝 𝑧𝑡 𝑧𝑡−1

𝜔𝑡−1,1

𝜔𝑡−1,2

𝜔𝑡−1,3

𝜔𝑡,1

𝜔𝑡,2

3

2

3

3

1

1

1

2

2

Implementation caveats

• When implementing the algorithm, working with probabilities can lead to numerical instabilities.

• We could even get 𝜔𝑡,𝑘 = 0 in computers when 𝜔𝑡,𝑘becomes very small => this is common when
the sequence length is >= 100.

• Recommendation: always work in the log domain

• E.g., do not compute 𝜔𝑡,𝑘; compute ln𝜔𝑡,𝑘

• For stable computation of forward-backward algorithm, see (PRML, Bishop, 2006, Sect. 13.2.4)

38

Main tasks for HMM

• Task 1 [inference]: Given an HMM and the observation 𝑥1:𝑛, how likely is it to observe the given
sequence? What is the posterior distribution of 𝑧𝑡 for each 𝑡?

• 𝑝(𝑥1:𝑛) => used for checking convergence, comparing various models, model selection, etc.

• 𝑝 𝑧𝑡 = 𝑘 𝑥1:𝑛), ∀𝑡

• Task 2 [inference – “decoding”]: Given an HMM and the observation 𝑥1:𝑛, what is the most likely
hidden state sequence?

• i.e., 𝑧1:𝑛
∗ = argmax

𝑧1:𝑛
𝑝 𝑧1:𝑛 𝑥1:𝑛)

• This gives you the ultimate answer to our speaker diarization task.

• Task 3 [learning]: Given the observation 𝑥1:𝑛, learn the HMM parameters.

39

Task 3: learning HMMs

• Naively, maximizing likelihood 𝑃 𝑥1:𝑛; Θ = σ𝑧1:𝑛 𝑃 𝑥1:𝑛, 𝑧1:𝑛; Θ is tricky

• Recall the MLE issues for GMMs

• Can we design a tractable algorithm for learning HMMs using the EM framework?

• Recall the EM algorithm:

• Repeat:

• E-step: calculate 𝑃 𝑧1:𝑛 ∣ 𝑥1:𝑛; Θ
(𝑡)

• M-step: Θ(𝑡+1) ← argmaxΘ σ𝑧1:𝑛 𝑃 𝑧1:𝑛 ∣ 𝑥1:𝑛; Θ
(𝑡) ln 𝑃 𝑥1:𝑛 , 𝑧1:𝑛; Θ

40https://haipeng-luo.net/courses/CSCI567/2021_fall/lec8.pdf

Learning HMMs with the EM algorithm
• Warmup: what is the MLE for HMM with observation 𝑥1:𝑛 and hidden states 𝑧1:𝑛?

• Likelihood: ln 𝑃 𝑥1:𝑛, 𝑧1:𝑛; Θ

= ln 𝑃 𝑧1; 𝜋 + σ𝑖=2
𝑛 ln 𝑃 𝑧𝑖 𝑧𝑖−1; 𝐴 + σ𝑖=1

𝑛 ln 𝑃(𝑥𝑖 ∣ 𝑧𝑖; 𝜙)

= σ𝑘 𝐼(𝑧1 = 𝑘) ln 𝜋𝑘 + σ𝑗σ𝑘σ𝑖 𝐼 𝑧𝑖−1 = 𝑗, 𝑧𝑖 = 𝑘 ln 𝐴𝑗𝑘 + σ𝑘σ𝑖 𝐼 𝑧𝑖 = 𝑘 ln 𝑃𝜙𝑘
(𝑥𝑖)

• Each part can be maximized individually wrt 𝜋, 𝐴𝑗’s and 𝜙𝑘’s

• Part 1: maximize ln 𝑃 𝑧1; 𝜋 = σ𝑘 𝐼(𝑧1 = 𝑘) ln 𝜋𝑘
=> ො𝜋𝑘 = 𝐼(𝑧1 = 𝑘)

• Part 2(𝑗): maximize σ𝑘 σ𝑖 𝐼 𝑧𝑖−1 = 𝑗, 𝑧𝑖 = 𝑘 ln 𝐴𝑗𝑘 s.t. 𝐴𝑗 ∈ Δ𝐾−1

=> መ𝐴𝑗,𝑘 =
#{𝑖:𝑧𝑖−1=𝑗, 𝑧𝑖=𝑘}

#{𝑖:𝑧𝑖−1=𝑗}

41

𝑧1

𝑥1

𝑧2

𝑥2

𝑧𝑛−1

𝑥𝑛−1

𝑧𝑛

𝑥𝑛

…

Learning HMMs with the EM algorithm (cont’d)

• Part 3 (𝑘): maximize σ𝑖 𝐼 𝑧𝑖 = 𝑘 ln 𝑃𝜙𝑘
(𝑥𝑖)

• Optimal 𝜙𝑘 Depends on the emission model

• E.g. 𝑃𝜙(𝑥) = Categorical(𝜙) => 𝜙𝑘,𝑙 =
#{𝑖:𝑥𝑖=𝑙, 𝑧𝑖=𝑘}

#{𝑖:𝑧𝑖=𝑘}

• E.g. 𝑃𝜙(𝑥) = 𝑁(𝜙, 𝐼) => 𝜙𝑘 =
σ𝑖:𝑧𝑖=𝑘

𝑥𝑖

#{𝑖:𝑧𝑖=𝑘}

• Summary – MLE with fully observed data:

• ො𝜋𝑘 = (empirical frequency of 𝑧1 = 𝑘)

• መ𝐴𝑗,𝑘 = (empirical frequency of 𝑧𝑖 = 𝑘 given 𝑧𝑖−1 = 𝑗)

• ෠𝜙𝑘 = (MLE of 𝑃𝜙(𝑥) over { 𝑥𝑖 , 𝑧𝑖 : 𝑧𝑖 = 𝑘})

42

𝑧1

𝑥1

𝑧2

𝑥2

𝑧𝑛−1

𝑥𝑛−1

𝑧𝑛

𝑥𝑛

…

Learning HMMs with the EM algorithm (cont’d)

• Using EM algorithm for MLE with observation 𝑥1:𝑛 alone

• Given parameter in previous iteration Θ(old), what does the M-step look like?

• Intuition: the M-step performs MLE on a weighted collection of augmented sequences (𝑥1:𝑛, 𝑧1:𝑛),

each with weight (multiplicity) 𝑃 𝑧1:𝑛 ∣ 𝑥1:𝑛; Θ
(old)

• Mental picture: 𝑥1:𝑛 induces 𝐾𝑛 fully-observable sequences (𝑥1:𝑛, 𝑧1:𝑛) => compute MLE on this giant
weighted dataset

• ො𝜋𝑘 = (weighted empirical frequency of 𝑧1 = 𝑘) = 𝑃 𝑧1 = 𝑘 ∣ 𝑥1:𝑛; Θ
(old)

• መ𝐴𝑗,𝑘 = (weighted empirical frequency of 𝑧𝑖 = 𝑘 given 𝑧𝑖−1 = 𝑗) =
σ𝑖 𝑃 𝑧𝑖−1=𝑗,𝑧𝑖=𝑘∣𝑥1:𝑛;Θ

𝑜𝑙𝑑

σ𝑖 𝑃 𝑧𝑖−1=𝑗∣𝑥1:𝑛;Θ
𝑜𝑙𝑑

• ෠𝜙𝑘 = (weighted MLE of 𝑃𝜙(𝑥) over { 𝑥𝑖 , 𝑧𝑖 : 𝑧𝑖 = 𝑘}) = argmax𝜙σ𝑖 𝑃 𝑧𝑖 = 𝑘 ∣ 𝑥1:𝑛; Θ
𝑜𝑙𝑑 ln 𝑃𝜙(𝑥𝑖)

43

Learning HMMs with the EM algorithm (cont’d)

• Formal derivation of M-step:

maximizeΘ 𝑄 Θ;Θ 𝑜𝑙𝑑 =෍

𝑧1:𝑛

𝑃 𝑧1:𝑛 ∣ 𝑥1:𝑛; Θ
(old) ln 𝑃 𝑥1:𝑛, 𝑧1:𝑛; Θ

• Equivalent to:

maximizeΘ σ𝑘 𝑃(𝑧1 = 𝑘 ∣ 𝑥1:𝑛; Θ
(old)) ln 𝜋𝑘

+σ𝑗σ𝑘σ𝑖 𝑃 𝑧𝑖−1 = 𝑗, 𝑧𝑖 = 𝑘 ∣ 𝑥1:𝑛; Θ
(old) ln 𝐴𝑗𝑘

+σ𝑘σ𝑖 𝑃 𝑧𝑖 = 𝑘 ∣ 𝑥1:𝑛; Θ
(old) ln 𝑃𝜙𝑘

(𝑥𝑖)

• Again, each part can be maximized individually wrt 𝜋, 𝐴𝑗’s and 𝜙𝑘’s

44

෍

𝑘

𝐼(𝑧1 = 𝑘) ln 𝜋𝑘 +෍

𝑗

෍

𝑘

෍

𝑖

𝐼 𝑧𝑖−1 = 𝑗, 𝑧𝑖 = 𝑘 ln 𝐴𝑗𝑘 +෍

𝑘

෍

𝑖

𝐼 𝑧𝑖 = 𝑘 ln 𝑃𝜙𝑘
(𝑥𝑖)

Learning HMMs with the EM algorithm (cont’d)

• The M-step requires access to the posterior distributions

of (pairs of) hidden states at different time steps

• How to obtain them?

• Recall: the forward-backward algorithm can be used to give us 𝛾𝑖,𝑘: = 𝑃 𝑧𝑖 = 𝑘 ∣ 𝑥1:𝑛; Θ
𝑜𝑙𝑑

• How about 𝜉𝑖,𝑗,𝑘 ≔ 𝑃 𝑧𝑖−1 = 𝑗, 𝑧𝑖 = 𝑘 ∣ 𝑥1:𝑛; Θ
𝑜𝑙𝑑 ?

• Key observation: 𝑃 𝑧𝑖−1 = 𝑗, 𝑧𝑖 = 𝑘 ∣ 𝑥1:𝑛 ∝ 𝑃 𝑧𝑖−1 = 𝑗, 𝑧𝑖 = 𝑘, 𝑥1:𝑛

= 𝑃 𝑥1:𝑖−1, 𝑧𝑖−1 = 𝑗, 𝑧𝑖 = 𝑘, 𝑥𝑖:𝑛

= 𝑃 𝑥1:𝑖−1, 𝑧𝑖−1 = 𝑗)𝑃 𝑧𝑖 = 𝑘 𝑧𝑖−1 = 𝑗 𝑃(𝑥𝑖:𝑛 ∣ 𝑧𝑖 = 𝑘

= 𝛼𝑖−1,𝑗𝐴𝑗,𝑘 𝑃𝜙 𝑥𝑖 𝛽𝑖,𝑘

45

ො𝜋𝑘 = 𝑃 𝑧1 = 𝑘 ∣ 𝑥1:𝑛; Θ
(old)

መ𝐴𝑗,𝑘 =
σ𝑖 𝑃 𝑧𝑖−1=𝑗,𝑧𝑖=𝑘∣𝑥1:𝑛;Θ

𝑜𝑙𝑑

σ𝑖 𝑃 𝑧𝑖−1=𝑗∣𝑥1:𝑛;Θ
𝑜𝑙𝑑

෠𝜙𝑘 = argmax𝜙σ𝑖 𝑃 𝑧𝑖 = 𝑘 ∣ 𝑥1:𝑛; Θ
𝑜𝑙𝑑 ln 𝑃𝜙(𝑥𝑖)

Learning HMMs with the EM algorithm - summary
• EM for HMM (Also known as the Baum-Welch algorithm):

• Repeat:

• E-step: (1) calculate 𝛾𝑖,𝑘: = 𝑃 𝑧𝑖 = 𝑘 ∣ 𝑥1:𝑛; Θ
𝑡

(2) calculate 𝜉𝑖,𝑗,𝑘 ≔ 𝑃 𝑧𝑖−1 = 𝑗, 𝑧𝑖 = 𝑘 ∣ 𝑥1:𝑛; Θ
𝑡

using the forward-backward algorithm

• M-step:

(1) ො𝜋𝑘 = 𝑃 𝑧1 = 𝑘 ∣ 𝑥1:𝑛; Θ
(old)

(2) መ𝐴𝑗,𝑘 =
σ𝑖 𝑃 𝑧𝑖−1=𝑗,𝑧𝑖=𝑘∣𝑥1:𝑛;Θ

𝑜𝑙𝑑

σ𝑖 𝑃 𝑧𝑖−1=𝑗∣𝑥1:𝑛;Θ
𝑜𝑙𝑑

(3) ෠𝜙𝑘 = argmax𝜙σ𝑖 𝑃 𝑧𝑖 = 𝑘 ∣ 𝑥1:𝑛; Θ
𝑜𝑙𝑑 ln 𝑃𝜙(𝑥𝑖)

• Update parameters: Θ 𝑡+1 ← (ො𝜋, መ𝐴, ෠𝜙)

46

𝑧1

𝑥1

𝑧2

𝑥2

𝑧𝑛−1

𝑥𝑛−1

𝑧𝑛

𝑥𝑛

…

HMMs: closing remarks

• Alternative algorithms for learning HMMs

• Method of Moments

• Provable guarantees if no model misspecification

• Linear dynamical systems: 𝑥𝑡 and 𝑧𝑡’s are continuous and satisfies joint Gaussian distribution

• Kalman filter

• Widely used in control applications

• Dynamic Bayesian networks: generalizing HMMs to structured hidden states

and observations

47

Summary

• d-separation

• HMM for modeling and inference on sequential data

• Viterbi algorithm for finding the most likely sequence

• EM for learning the parameters (forward-backward algorithm)

48

Next lecture (11/7)

• Neural networks; the backpropagation algorithm

• Assigned reading: CIML 10.1-10.2

49

