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Background: A deeper look at conditional independence

* Recall the graphical representation (plate notation) specifies the dependency \
* More precisely, it specifies how a joint distribution can be factored in a structured way
g n

* Remark: We focus on directed graphical models (Bayes nets)

* another world: undirected models

* Intro example:
* PA=a,B=bC=c)=P(C=clA=a,B=b)-P(A=a,B=D>)

=P(C=c|A=a,B=b)-P(B=b|A=u)-P(ﬁ=c@

* Graphical representation: /

For each conditional distribution, add direct links from the nodes being @
conditioned to the node whose distribution is of interest |

e




Warning: notation convention

* Notation easily gets overwhelming, no easy way out.
* Fully-specified notation: explicit, but takes too long to process
e Simplified notation: concise, but takes time to train yourself to be familiar

Probabilistic models: For fully-specified notation, we always need to specify the random variable
and the value that it takes separately.

Eg. P(A=a,B=b,C=c)=P(C=clA=aB=b)-P(A=a,B=D>b)
=P(C=clA=a,B=b)-P(B=b|A=a)-P(A=a)

Simplified notation: P(a,b,c) = P(cl a,b) - P(a,b)

=P(clab)-P(bla)-P(a)
* j.e. reserve symbol a for values taken by random variable A (same for B, C)

We will use simplified notation throughout this lecture @
L




PGM: flexible modeling of data distributions

Q: what kind of distribution does this graph represent?

P(x1,%3, ..., x7) = P(x)P(x2)P(x3)P (x4 | x1,%2,%3) -
P(xs | x1,x3)P(xg | x4 )P(x7 | X4,%5)

For a general directed acyclic graph (DAG) G with K nodes x4, ..., X,

P(xq1, %3, 0, Xg) = [1hc1 P(xx | pag;

| Parent nodes of x, in G |

Fact: this implicitly implies P(xy | pag ) = P(xy | X1, oo, Xpo—1), i-€. X 1L {Xq, ..., Xp—1} \ PA | Pag
* E.g.xg WL {X1,X2,X3, X5} | X4

Edges oftentimes encode causal relationships between the node variables



Bayes net = DAG + Conditional probability table

© P(xq1,%p, ..., xg) = [15x_1 P(xx | pag) <-also need to specify each P(x; | pay) respectively

* Aside:J IL B,E | A =>the effect of B, E to John’s calling is “completely captured” in Alarm status

P(B=true) P(E=true)

Burglary o1 Earthquake 5

B E| P(A=true|B,E)

r ot .70

ft .70

ff 01

P(J=true|A) A | P(M=true|4)

JomnCalls )| | 2 Marycatis)|*] T
ohnCalls )| 05 aryCalls )| ol

Figure 13.2 A typical Bayesian network, showing both the topology and the conditional
probability tables (CPTs). In the CPTs, the letters B, E, A, J, and M stand for Burglary,
Earthquake, Alarm, JohnCalls, and MaryClalls, respectively.

http://aima.cs.berkeley.edu/



PGM: parsimonious representation of distributions

* Suppose each xq, x5, ..., xx take binary values

B E| P(A=true|B.E)
. o o o t t .70
* Naively representing P(xq, X5, ..., Xk ) requires 2% entries o
ff 01
A| P(J=true|4) A | P(M=true|4)
N . . t .90 t .70
* With graphical model representation 05 A

Figure 13.2 A typical Bayesian network, showing both the topology and the conditional

e probability tables (CPTs). In the CPTs, the letters B, E, A, J, and M stand for Burglary,
P (xl ) x2 ) xK) k=1 P xk | pak Earthquake, Alarm, JohnCalls, and MaryCalls, respectively.

Each P(x), | pay) takes 2/P3xI*1 entries

. . O
so total representation complexity < Y, 2/Pakl+1 < 2 (mz?x [pa)

much smaller than 2K if mI?X |pa| < K (we will see that this happens in many natural PGMs)



Three [andmark examples

C

e tail-to-tail

e Head-to-tail

 head-to-head



* P(a,b) =)..P(c)P(alc)P(b | c)andingeneral it does not factorize

=> |t is generally not truethata 1L b

Ex 1: Tail-to-tail (common cause)
 P(a,b,c) =P(c)P(alc)P(bl]c)

(e.g. John’s calling is correlated with Mary’s calling)

C

P(a,b,c)
P(c)

=>al b]c a

 However, P(a,b | c) =

=P(alc)P(blc)

=




Ex 2: head-to-tail

 P(a,b,c) =P(a)P(cla)P(blc)

* P(a,b) =P(a)),;P(cla)P(blc) =P(a)-P(bl|a)
=> It is generally not true thata 1L b

(e.g. “Cloudy” is correlated with “Wet grass”)

P(a,b,c) _ P(a)P(ClA)P(blc)
P(c) P(c)

 However, P(a,b | ¢c) = =P(alc)P(b]|c)

=>alb]|c

* Another important example: Markov chain (for time series data)

https://www.cs.odu.edu/~zeil/cs795ML/webcourse/Slides/graphical/handout.pdf



Ex 3: head-to-head (common effect) .

 P(a,b,c) = P(a)P(b)P(c|a,b)

e P(a,b) =Y, P(@)P(b)P(c|ab) = P(a)P(b)
=>alb

P(abc) _ P@)P(b)P(clab) does not necessarily factorize
P(c) P(c)

 However, P(a,b | ¢c) =

a
=> |t is generally nottruethata 1L b | c



Ex 3: head-to-head (cont’d)

* If you pick an applicant randomly, the GRE and GPA is GRE GPA
independent (according to our model)

* However, if you randomly pick an applicant who was accepted,
then the low GRE may indicate that she had a high GPA.

e Otherwise the student would have been rejected.

e This is called the explain-away phenomenon. Admission: Y/N

* Another example:
P o Earthquake
B and E are dependent, conditioned on A

* Itis also true that B and E are dependent, conditioned on

descendants of A (e.g. ]) @ @
11




Ssummary

e tail-to-tail

e Head-to-tail

 head-to-head

oA b ¢

No

No

Yes

tllblc ¢

Yes

Yes

No
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Next lecture (10/31)

* Markov models; Hidden Markov models (HMMs)

* Assigned reading: Prof. Jason Pacheco’s PGM slides:
https://www?2.cs.arizona.edu/~pachecoj/courses/csc535 fall20/lectures/pgms.pdf

e Additional reading: Bishop, “Pattern Recognition and Machine Learning”, Section 8.1-8.2

13



D-separation

Systematic Rules for determining conditional independence given a directed acyclic graph.

Answer questions of the form:Isa IL b | c true or false ? . .

[Def] b is a descendent of a if there exists a directed path from a to b.
* =>qa is a descendent of a by definition.

[Def] An undirected path p from a to b is blocked given c if it includes a node:
* (a) the arrows on p meet either head-to-tail or tail-to-tail at the node, and the node is c, OR
* (b) the arrows meet head-to-head at the node, and neither the node nor any of its descendants is

“Conditioned on c being observed, information can flow from a to b through path p”

[Def] (D-separation)
a is d-separated from b given c if every undirected path between a and b is blocked given c.

[Thm] If a is d-separated from b given ¢, thena 1L b |c.

14



B\ockage: pictoria\ illustration

An undirected path p is blocked given c if it includes a node:

(1) the arrows on p meet either head-to-tail or tail-to-tail at
Tall-to-TalI the node, and the node is ¢, or

(2) the arrows meet head-to-head at the node, and neither

the node nor any of its descendant is ¢

Doesn’t
Blocks Block
X Doesn’t < Z
Block Blocks
Head to- Head Q ¢
X Y 7 Head-to-Tail «x Y Z
Blocks Doesn’t

Block
https: //www%ccs arizona.edu/~pachecoj/courses/csc535_fall20/lectures/pgmes. pdf



. An undirected path p is blocked given c if it includes a node:
D_Se p d rat 10N exam p | €S (1) the arrows on p meet either head-to-tail or tail-to-tail at

ato b hasonlyonepathp =a—e—f —b>

the node, and the node is c, or
(2) the arrows meet head-to-head at the node, and neither
the node nor any of its descendant is ¢

In(a):Isa 1L b |c? No, p is not blocked given ¢

In(b):1sa 1L b | f? Yes, pis blocked given f

sa 1l b?

a

16



D-separation: general definition for node sets

Q:IsA 1L B | Ctrue or false ?
e Each of A,B,Cis a set of random variables

[Def] An undirected path p from a to b is blocked given C if it includes a node:
* (a) the arrows on p meet either head-to-tail or tail-to-tail at the node, and the node isin C
e (b) the arrows meet head-to-head at the node, and neither the node nor any of its descendants is in C

[Def] (D-separation)
A is d-separated from B given C if every undirected path between a € A and b € B is blocked given C.

[Thm] If A is d-separated from B given C,then AL B | C.

17



D-separation: an exercise

IsG IL A - equivalently, G 1L A | @?
Yes, G-H-D-E-C-A is blocked by E
G-F-E-C-Ais blocked by F

sEILHI|{D,G}? e
Yes, E-D-H is blocked by D; E-F-G-H is blocked by F (or G)

sEILH]|{CD,F}?
No, although E-D-H is blocked by D, E-F-G-H is not blocked

18



Sequential data

* So far, we have dealt with IID data:  z;~D

* What if the data has dependency between z; and z;?
* E.g., sequentially generated: z; | zy.;-1 ~ D(O® = f(z1.;1—1) )
* Notation: x{.,, means x4,.., X,

* Examples:
* Spoken language: z;..,, Z; € [W]: word index
* What word you say depends on what you just said; ‘context’.
* Human movement, say soccer: z,.,=> video (sequence of pictures, say every 1/24 second)
* It’s a video, so the dependency is natural (e.g., you cannot teleport).

* Biology: amino acid/protein sequence.

19



Guiding example: Speaker diarization

Speaker 1

* You have recorded a meeting happened with K

people. Can we segment it according to speakers’ ‘y‘y‘y‘v‘v‘y‘v"‘v‘y'v‘vA""yA"" ‘,‘,‘y""‘,‘,"‘,
identities?
\ Speaker 2

* Data: audio sequence xq.p,,
* x, € R% auditory features during a short time interval (e.g., 100ms).

* Goal: Segment the audio with contiguous blocks where each block is assigned a speaker index.
* i.e., infer z; € [K] indicating who was speaking at time point t.
* Let’s call z; a state.

* Key characteristic: sequential dependency!
* stickiness: if you spoke at time t, you are likely to be speaking at time t+1.

* transition: there are more frequent transition pairs than other pairs. (the boss keeps correcting
a newbie)

20



(HMM)

* Graphical representation: i ':i

* The key characteristic: Markovian assumption
* Only model the first-order dependency

Zn—1 Zn Zp11

* Possible to add the dependency up to 7 past z;’s, but remember the bias-variance tradeoff.

e Further, the computational complexity.
* Productive mindset: try a simple model, and fix it only if it does not work.

* In fact, we can work with M sequences: observations {xm,t}me[M] te[N]

* hidden states {Zm t} me[MLte[N] unobserved

N can even be different for each m.
e But we will mainly work with the case of M=1.

21



HMM — generative story )

* The joint distribution over (observations, hidden states)
n n
PGy z2) = P - | | PCait zin) | [ Pxi 1 2)
=2 =1

* Corresponding generative story:
» 71 ~ Categorical(m)
e Fori =2,...,n:

* Draw z; ~ Categorical(4,,_,) A= —h b = e A
e Fori=1,2,..,n: —Ag — | — x — )

* Draw x; ~ Py_ (*)
* e.g. Py = Categorical(¢), or Py, = N(¢, 1)

22



HMM model specification ()=
ONO

* Model parameters ® is composed of:
* Initial distribution
* Transition probability A
* Emission distribution parameter ¢
e Likelihood: P(x1.n, Z1.0; ©) = P(zq;m) - [112, P(z; | zi—1; A) - T1i{ P(x; | zi; @)
* Marginal likelihood P(x1.,;0) = %, P(X1.n,Z1:n; ©)

* Comparisonto GMM
* z;'s has the same role as k;’s

* HMM allows temporal dependence of hidden states
* HMM'’s emission distribution is not necessarily Gaussian




HMM example

Gaussian emission model P(x | z = k; ¢ ) = Py, (x) = N(uy, Zy)

1

0.5¢

1

Transition probability A = (

9 .05
05 9
05 .05

.05
.05

24



HMM: key conditional independence structure

* Claim: conditioned on z;, the following three groups of r.vs,

(X, Z)1:t-1, X¢, (X, 2) 41,0, are independent Q @ e @ Q
* How to show A, B, C are independent? ° @ Q @ @
e Oneway:show A Il BandC 1L (A,B)

* Checking conditional independence by d-separation:
(%, 2)1:0-1 UL X¢ | 2¢
(%, 2)1:0-1, X L (X, Z) t41m | 22

* Consequences: e.g. P(x¢ | 2, x1:0-1) = P(x¢ | 2¢), P(Zp41 | 26, %1:0-1) = P(Zp41 | 2¢)

25



Main tasks for HMM

* Task 1 [inference]: Given an HMM and the observation x;.,,, how likely is it to observe the given
sequence? What is the posterior distribution of z; for each t?

* p(x1.,) =>used for checking convergence, comparing various models, model selection, etc.
* p(z; = k| X1:n), V1t

* Task 2 [inference — “decoding”]: Given an HMM and the observation x;.,,, what is the most likely
hidden state sequence?

° i'e" Zik:n = arg r?axp(zl:n | xl:n)
1n

* This gives you the ultimate answer to our speaker diarization task.

* Task 3 [learning]: Given the observation x;.,,, learn the HMM parameters.

26



nk

Task 1: inference

Naively, calculating P(x1.,) = 27, P(X1.n, Z1.5) takes time exponential in n
* Can we do better?

Key observation: can use dynamic programming to save computation
* Subproblem: compute P(x;.;) for every t?

A slightly different subproblem
|P(x1:tth = k)|= quk(xt) - P(x1.4-1,2c = k)
a:,k = quk(xt) 'ij(xl:t—l:zt—l =j, 2zt = k)
= Py, (x¢) 'ij(zt =Kk | X1:-1,2e-1 = J) - P(X1:0-1,Z¢—1 = J)

= Py (0) - T Aje - POriee, Zmr = ),
I

At—1,j
Initial condition: a; j = P(x1,2z, = k) = Py, (x1) - T

Time complexity for computing all {at,k}: O(n K?) - forward algorithm

27



Next lecture (11/2)

* Inference in HMMs; Learning in HMMs: Expectation-Maximization

* Assigned reading: Prof. Jason Pacheco’s slides on Dynamic Systemes:
https://www?2.cs.arizona.edu/~pachecoj/courses/csc535 fall20/lectures/dynamicalsys.pdf

e HW3 will be released soon

28


https://www2.cs.arizona.edu/~pachecoj/courses/csc535_fall20/lectures/dynamicalsys.pdf

Announcements

e HW3 is up (due 11/16)

* Please review my feedback on your project proposals

29



Task 1: inference (cont’d)

How to compute p(z; = k | x1.,), Vt ? ° Q

It suffices to compute p(z; = k, x1.,) forall k
p(zt=k,x1m) — p(thktxl:n)
p(xX1:n) Z] p(Zt=J,%X1:n)

=>p(zy =k | x1.) =

Forward algorithm gives us: a; , = P(x1.¢, 2 = k)
Key observation: x1.; L X¢y1.0 | Z¢

=>pz =k, x1.) =@ =k, x1.0) PXpg1n | 2 = K, x1.)
= Q- p(Xti1m | Ze = k)

Define f; 1= p(X¢t4+1.n | Z¢ = k). Can we compute it efficiently?

30



Task 1: inference (cont’d) oYe

Ber = PXtp1m | Z¢ = k) ° Q

Can also compute it using dynamic programming

Observe: 7, , =1
Claim: f; ) = Z;{=1 Ayj quj(xt+1),8t+1,j
Proof:
P(xXt11m | 2e = k) = ij(xt+1:'ru Zevr =J | 2 = k)
= ZjP(Zt+1 =j 1 ze = k) P(Xts1m | Zex1 = ), 2 = k)
=%jP(Zs1=J 12 = k) P(Xey1n | Zegr = J)
=%jP(z41 =1z, = k) P¢j(xt+1) P(Xt42:n | Zev1 =)

This is the backward algorithm -- Time complexity for computing all {,Bt,k}?

31



Forward-Backward algorithm - summary

:81,k BZ,R lgn—l,k ,Bn,k
— o — “—
Z1 Z > eee Zn—1
— > > — (=)
a1,k a2k In-1,k An.k

All All All
k=1 .
Forward message: a;, = Py, (X¢) - XjAjk * Xp—1, 2? 2? 2?

Backward message: [ = 2 Ag; - quj (Xt41) - Bt

32



Main tasks for HMM

* Task 1 [inference]: Given an HMM and the observation x;.,,, how likely is it to observe the given
sequence? What is the posterior distribution of z; for each t?

* p(x1.,) =>used for checking convergence, comparing various models, model selection, etc.
* p(zt = k| x),Vt

* Task 2 [inference — “decoding”]: Given an HMM and the observation x;.,,, what is the most likely
hidden state sequence?

* i.e., z1y, = argmaxp(zy.y, | x1.n)

Z1:n

* This gives you the ultimate answer to our speaker diarization task.

* Task 3 [learning]: Given the observation x;.,,, learn the HMM parameters.

33



Task 2: Most probable hidden state sequence

» Conceptually, a very simple problem: Z21.n=argmaxp(z;., | X1.)
Z1:n

* But, similar to naively calculating P(x,.,,), naive implementation has exponential time complexity!

—

* Fortunately, the conditional independence L D D D
structure of HMM admits an efficient computation!

34



Viterbi’s algorithm (1967)

ZAl:n: arg maXP(Zl:n | xl:n) = arg maXP(Zl:nt xl:n)

Z1:n Z1n
© Wi = zr??_)i P(x1.t)Z1.4-1,2¢ = k) forall k € [K] t-2 t-1 t t+1

* Analogue of “forward variables” a; = P(x1.t,2; = k)

>
Wt—1,1 W 1
Why are w; ;s useful? k=1 D D D D

* E.g.optimal Z,, = argmaxy, w,, ;

How to compute w; ;'s for every t € [n]?

Claim: w; ;. = Py, (X¢) m]axAjk Wi_1,j

Proof: w; , = max P(X1.¢,21.t-1, 2t = k)

Wk /1,3
=0 0° 0//0-
— mMax max P(xl:t—lrzl:t—Zth—l = j» Xt)Zt = k)

] Z1:it-2
= m]axzmax P(x1:t—1;Z1:t—2;Zt—1 =j)P(xt»Zt =k|zi—1 =]J)
1:t—-2

I |
I I p(x¢lz), p(z¢]Zp 1)

We—1,j Aj Py, (x¢) >




Viterbi’s algorithm (cont’d)

* Suppose we would like to recover Z; for every t
* Observe: Z;.; =argmax P(zy.¢t, Z¢+1.70 X1:m)
Z1:t
Therefore,

* Fort =n, Z, =argmax (max P(z1.n—1)Zn, xl:n)) = argmax(a)n,j)
Zn Z1m-1 j

* Fort<n-—1:

Zy =argmax ( maxP(Z1.¢—1,Z¢, Zt+1:m0 X1:0)
Zt Z1:t-1

p(x¢lz), p(z¢|Zp—1)

= argmax(maxP(zl:t_l,xl:t,zt) + P(Zg41 1 2¢) P(Xpam | 2t+1))

Zt Z1:t-1
= argmax (ZmaXP(Z1:t—1;x1:t»Zt =J) P(Zt41 | z :j))
] 1:t—1

- argmax(wﬁf 'Af;2t+1)
J
This is exactly the optimal j in the definition of w; 1 = Py, (X¢41) Max Aj, wy j fork = 2,44
J

36



Backtracking

e Suppose z, = 3

* The entries in each cell (¢, k) is the index j of the cell

in the previous time step that induces optimal

joint probability max P (Xq.¢, Z1.t—1, Z¢ = k):
Z1:t-1

Wt = P(xtlzt = k) m]aXAjk Wi—1,j

szD

n-2 n-1 n
- >
t—1,1 Wt 1
&’ W2
1 3 2

7
J/

p(x¢lz), p(z¢|zp—1)

37



Implementation caveats

* When implementing the algorithm, working with probabilities can lead to numerical instabilities.
* We could even get w; , = 0 in computers when w, ,becomes very small => this is common when
the sequence length is >= 100.
 Recommendation: always work in the log domain
* E.g., do not compute w, ;; compute Inw,
* For stable computation of forward-backward algorithm, see (PRML, Bishop, 2006, Sect. 13.2.4)

38



Main tasks for HMM

* Task 1 [inference]: Given an HMM and the observation x;.,,, how likely is it to observe the given
sequence? What is the posterior distribution of z; for each t?

* p(x1.,) =>used for checking convergence, comparing various models, model selection, etc.
* p(zt = k| x15),Vt

* Task 2 [inference — “decoding”]: Given an HMM and the observation x;.,,, what is the most likely
hidden state sequence?

* i'e" Zik:n = arg I?axp(zlm | xl:n)
1n

* This gives you the ultimate answer to our speaker diarization task.



Task 3: learning HMMs

* Naively, maximizing likelihood P(x;.,; 0) = X, P(Xq1.n, Z1.; ©) is tricky
* Recall the MLE issues for GMMs

e Can we design a tractable algorithm for learning HMMs using the EM framework?

e Recall the EM algorithm:
* Repeat:
* E-step: calculate P(zy., | x1.,; 09)

* M-step: 0*D « argmaxg Y, P(z1:5 | %105 0©) In P(x1., 2105 ©)

https://haipeng-luo.net/courses/CSCI567/2021_fall/lec8.pdf

40



Learning HMMs with the EM algorithm

* Warmup: what is the MLE for HMM with observation x;.,, and hidden states z;.,,?

Likelihood: In P(x1.,, Z1.5,; ©) @ @
=InP(zy;m)+ X, InP(z | zi—;A) + Xin  In P(x; | z;; @)
=Y l(zy =k)Inmy, + ijkzil(zi—l =j,zi=k)InAj + Xy X 1(z; = k) In Py, (x;)

Each part can be maximized individually wrt 1, A;’s and ¢} ’s

Part 1: maximize In P(zy; ) = ), [(z; = k) Inmy,
=> My = 1(zy = k)

Part 2(j): maximize Y, (X;1(z;—1 = j,z; = k)) In Aj; st. A; € A¥~1
7 #{i:zi—1=J, zi=k}
=> A =
Ik #{izi_1=}

41



Learning HMMs with the EM algorithm (cont’d)

* Part3 (k): maximize }; I(z; = k) In Py, (x;) @ 6 @ @
* Optimal ¢, Depends on the emission model /
i ONO ) ()

* E.g. qu (X) — Categorical(¢) = ¢k'l - #{i:zi=k}

Yiz;=k i

* e Py(0) = N(6. D => e = 37—

e Summary — MLE with fully observed data:
i1, = (empirical frequency of z; = k)
. Aj,k = (empirical frequency of z; = k given z;_1 = j)
* ¢, = (MLE of Py (x) over {(x;,z;): z; = k})

42



Learning HMMs with the EM algorithm (cont’d)

Using EM algorithm for MLE with observation x;.,, alone

« Given parameter in previous iteration @19 what does the M-step look like?

Intuition: the M-step performs MLE on a weighted collection of augmented sequences (x1.n, Z1.1),
each with weight (multiplicity) P(Zl:n | X1.7; G(Old))

Mental picture: x;., induces K™ fully-observable sequences (x;.,, Z;..,) => compute MLE on this giant
weighted dataset

* i1, = (weighted empirical frequency of z; = k) = P(21 =k | x1.n; G(Old))

ZiP(Zi—1=J';Zi=k|x1:ni®(0ld))
Y P(zi—1=jlxq.n;000lD)

¢, = (weighted MLE of Py (x) over{(x;,z;): z; = k}) = argmax ; P(Zi =k | xX1.p; G)(Old)) In Py (x;)

43
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Learning HMMs with the EM algorithm (cont’d)

* Formal derivation of M-step:

maximizeg Q(©; O°!®)) = Z P(z1n | X105 ®(°1d))|ln P(X{., Z1.n; ®)|
Z1-

1:n |
z Iz, = k) In 7, + Zzzl(zi_l =,z = k) In Ay + ZZI(zi = k) In Py (x;)
X Tk X 1

e Equivalent to:
maximizeg Y P(z; =k | x1.,; 0D In 7,
+2 2k Zip(zi—l =J,z; = k| xq.; @(Old)) In Ajy
+ D ZiP(zi =k | Xq.; ®(°1d)) In Py, (x;)

* Again, each part can be maximized individually wrt i, A;’s and ¢y ’s
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Learning HMMs with the EM algorithm (cont’d)

The M-step requires access to the posterior distributions ir = P(z1 = k | x1.; 0©1D)
of (pairs of) hidden states at different time steps
A _ Y P(zim1=]zi=klx1.n;00D)
yle ZiP(Zi—1=j|x1m;@)(old))

How to obtain them?

qsk = argmaxg, ZiP(Zi =k | X1.; G)(Old)) In Py (x;)

Recall: the forward-backward algorithm can be used to give us y;: = P(z; = k | xy.,; 0(0!D)

How about & jx := P(2zi—1 = j,z; = k | x1.; 0ID))?

Key observation: P(z;_1 =j,z; =k | x1.,) X P(z;_1 =j,z; = k, x{.,)
= P(X1:i-1,Zi-1 = J, Zi = Kk, Xi:p)
= P(x1:-1,2i-1 = DP(z; =k | -y = )P (xp:n | 2; = k)
= a;_1,jAjk Pp(xi)Bik



Learning HMMs with the EM algorithm - summary

EM for HMM (Also known as the Baum-Welch algorithm):

* Repeat:

(2) calculate &; ; x == P(Zi_l =j,zi =k | x1.;
using the forward-backward algorithm

* M-step:
(1) ) = P(2zq = k | x1.5; 0CID)

(2) A — ZiP(Zi—l=j,Zi=k|x1:n;®(Old))
I ZiP(Zi—1=j|x1:n;@)(old))

(3) py = argmaxy ; P(z; = k | x1.; 0°) In Py (x;)

° Update parameterS: ®(t+1) «— (ﬁ; A, $)

Bix B2k .
) E_Step: (1) calculate Vik:= P(Zi =k | X1:n5 G)(t)) Z1 —_ =Q_) > eee R @ —_
@(t)) ayk

azx An—1,k

™
) e
=
=
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HMMs: closing remarks

 Alternative algorithms for learning HMMs
* Method of Moments
* Provable guarantees if no model misspecification

Computer Science > Machine Learning

[Submitted on 26 Nov 2008 (v1), last revised 6 Jul 2012 (this version, v6)]

A Spectral Algorithm for Learning Hidden Markov Models
Daniel Hsu, Sham M. Kakade, Tong Zhang

Computer Science > Machine Learning

[Submitted on 29 Oct 2012 (v1), last revised 13 Nov 2014 (this version, v4)]

Tensor decompositions for learning latent variable models

Anima Anandkumar, Rong Ge, Daniel Hsu, Sham M. Kakade, Matus Telgarsky

* Linear dynamical systems: x; and z;’s are continuous and satisfies joint Gaussian distribution

e Kalman filter
* Widely used in control applications

* Dynamic Bayesian networks: generalizing HMMs to structured hidden states

and observations
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Ssummary

e d-separation
e HMM for modeling and inference on sequential data
 Viterbi algorithm for finding the most likely sequence

* EM for learning the parameters (forward-backward algorithm)
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Next lecture (11/7)

* Neural networks; the backpropagation algorithm

e Assigned reading: CIML 10.1-10.2
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