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Gaussian mixture model (GMM) for clustering

• Clustering

• Data: 𝑆 = 𝑥1, … , 𝑥𝑛 ⊂ ℝ𝑑

• Given: 𝐾 - the number of clusters.

• Generative story:

• 𝑘 ∼ Categorical(𝜋) (hidden)

• 𝑥 ∣ 𝑘 ∼ 𝑁(𝜇𝑘 , Σ𝑘)

• Maximum likelihood estimation: argmax
𝜋, 𝜇𝑘,Σ𝑘 𝑘=1

𝐾
σ𝑖 log(σ𝑘=1

𝐾 𝜋𝑘 𝑝(𝑥𝑖; 𝜇𝑘 , Σ𝑘))

• How to solve it?

• How do we get the cluster assignments?
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Illustration

• Mixture of 3 Gaussians

• (a) is ground truth (we don’t know this).

• (b) is what we see, (c) is what the algorithm can recover.
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GMM for clustering: algorithms

• Maximum likelihood estimation 

argmax
𝜋, 𝜇𝑘,Σ𝑘 𝑘=1

𝐾
σ𝑖 log(σ𝑘=1

𝐾 𝜋𝑘 𝑝(𝑥𝑖; 𝜇𝑘 , Σ𝑘))

is (1) computationally hard (2) ill-posed (see later slides) 

• How to design computationally efficient algorithms that can reasonably maximize the log-likelihood 
function?

• Observation: if for each data point 𝑖,

we not only have 𝑥𝑖 but also have 𝑘𝑖, then MLE is easy to calculate
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Warmup: MLE for GMM with known cluster membership

• Maximize likelihood ⇔ maximize log-likelihood

• max
𝜋, 𝜇,Σ

𝐿 𝜋, 𝜇, Σ = max
𝜋, 𝜇,Σ

σ𝑖 log 𝑃(𝑥𝑖 , 𝑘𝑖; 𝜋, 𝜇, Σ )

= max
𝜋, 𝜇,Σ

σ𝑖 log 𝑃 𝑥𝑖 𝑘𝑖; 𝜇, Σ + σ𝑖 log 𝑃 𝑘𝑖; 𝜋

= max
𝜇,Σ

σ𝑖 log 𝑃(𝑥𝑖 ∣ 𝑘𝑖; 𝜇, Σ ) +max
𝜋

σ𝑖 log 𝑃(𝑘𝑖; 𝜋)

• maximize
𝜋

σ𝑖 log𝑃 𝑘𝑖; 𝜋 = σ𝑘=1
𝐾 𝑛𝑘 ln 𝜋𝑘, where 𝑛𝑘 = #{𝑖: 𝑘𝑖 = 𝑘}

=> 𝜋𝑘 =
𝑛𝑘

𝑛

• max
𝜇,Σ

σ𝑖 log 𝑃 𝑥𝑖 𝑘𝑖; 𝜇, Σ = σ𝑘max
𝜇𝑘,Σ𝑘

σ𝑖:𝑘𝑖=𝑘
log𝑃 𝑥𝑖 𝑘𝑖 = 𝑘; 𝜇𝑘 , Σ𝑘
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Warmup: MLE for GMM with known cluster membership (cont’d)

• max
𝜇𝑘,Σ𝑘

σ𝑖:𝑘𝑖=𝑘
ln 𝑃 𝑥𝑖 𝑘𝑖 = 𝑘; 𝜇𝑘 , Σ𝑘

• Simplified problem: max
𝜇,Σ

σ𝑖 ln𝑁(𝑥𝑖; 𝜇, Σ),  where 𝑁 here denotes Gaussian pdf

𝑁 𝑥; 𝜇, Σ =
1

2𝜋 𝑑 Σ
exp −

1

2
𝑥 − 𝜇 ⊤Σ−1(𝑥 − 𝜇)

• Observation 1: for any fixed Σ, the optimal 𝜇 is 𝜇 =
1

𝑛
σ𝑖 𝑥𝑖 (Exercise)

• Observation 2: for any fixed 𝜇, the optimal Σ is such that Λ = Σ−1 equals

argmax
Λ

𝑓 Λ ≔
1

2
σ𝑖 ln Λ −

1

2
𝑥𝑖 − 𝜇 ⊤Λ 𝑥𝑖 − 𝜇

• Fact: 𝑓 is concave in Λ

• ∇𝑓 Λ = 0⇒ 𝑛Λ−1 − σ𝑖 𝑥𝑖 − 𝜇 𝑥𝑖 − 𝜇 ⊤ = 0⇒ Σ =
1

𝑛
σ𝑖 𝑥𝑖 − 𝜇 𝑥𝑖 − 𝜇 ⊤
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Warmup: MLE for GMM with known cluster membership (cont’d)

• In summary, for every 𝑘, the solution of 

max
𝜇𝑘,Σ𝑘

෍

𝑖:𝑘𝑖=𝑘

ln 𝑃 𝑥𝑖 𝑘𝑖 = 𝑘; 𝜇𝑘 , Σ𝑘

is given by:

𝜇𝑘 =
1

𝑛𝑘
σ𝑖:𝑘𝑖=𝑘

𝑥𝑖

Σ𝑘 =
1

𝑛𝑘
σ𝑖:𝑘𝑖=𝑘

𝑥𝑖 − 𝜇𝑘 𝑥𝑖 − 𝜇𝑘
⊤

• Also, recall that for every 𝑘, the optimal 𝜋𝑘 =
𝑛𝑘

𝑛
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GMM for clustering: algorithms

• What is the cluster memberships are unknown?

• This is generally known as the latent variable issue 

• Expectation-Maximization (EM) algorithm (Dempster et al, 1977) provides a general approach for 
approximate MLE for probabilistic models with latent variables

• Has wide applications well-beyond GMMs

• High-level idea: reduce to MLE for fully-observed probabilistic models
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EM algorithm: high-level idea

• Given: a probabilistic model 𝑃 𝑥, 𝑧; 𝜃 , 

with 𝑥 being the observed part, 𝑧 being the latent part

• Would like to maximize the log-likelihood on the observed data: ln 𝑃 𝑥; 𝜃 = ln σ𝑧𝑃 𝑥, 𝑧; 𝜃

• Maximizing ln σ𝑧𝑃 𝑥, 𝑧; 𝜃 is intractable => instead, maximize a lower bound of it

ln 𝑃 𝑥; 𝜃 = ln σ𝑧𝑃 𝑥, 𝑧; 𝜃 = lnσ𝑧𝑃 𝑧 𝑥; 𝜃′ ⋅
𝑃 𝑥,𝑧;𝜃

𝑃(𝑧∣𝑥;𝜃′)

≥ σ𝑧𝑃 𝑧 𝑥; 𝜃′ ln
𝑃 𝑥,𝑧;𝜃

𝑃(𝑧∣𝑥;𝜃′)
(Jensen’s inequality & concavity of ln 𝑥)

• With 𝑛 iid samples 

σ𝑖=1
𝑛 ln 𝑃 𝑥𝑖; 𝜃 ≥ σ𝑖=1

𝑛 σ𝑧𝑃 𝑧 𝑥𝑖; 𝜃
′ ln

𝑃 𝑥𝑖,𝑧;𝜃

𝑃(𝑧∣𝑥𝑖;𝜃
′)

9ℒ(𝜃) 𝑄(𝜃; 𝜃′)



EM algorithm: high-level idea

• σ𝑖=1
𝑛 ln 𝑃 𝑥𝑖; 𝜃 ≥ σ𝑖=1

𝑛 σ𝑧𝑃 𝑧 𝑥𝑖; 𝜃
′ ln

𝑃 𝑥𝑖,𝑧;𝜃

𝑃(𝑧∣𝑥𝑖;𝜃
′)

• Why optimizing 𝑄(𝜃; 𝜃′)? 

• Can be viewed as the log-likelihood of model 𝜃 on a “soft” set of fully-observed data

• The lower bound approximate 𝑄(𝜃; 𝜃′) is sometimes tight

• At 𝜃 = 𝜃′, 𝑄 𝜃′; 𝜃′ = ℒ(𝜃′)

• For general 𝜃, ℒ 𝜃 − 𝑄 𝜃; 𝜃′ = σ𝑖=1
𝑛 KL 𝑃 𝑧 𝑥𝑖; 𝜃

′ , 𝑃 𝑧 𝑥𝑖; 𝜃 ≥ 0

• Kullback-Leibler (KL) divergence: KL 𝑝, 𝑞 = E𝑧∼𝑝ln
𝑝(𝑧)

𝑞(𝑧)

• Properties: KL(𝑝| 𝑞 ≥ 0, for all p,q; KL(𝑞| 𝑞 = 0, for all q
10
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EM algorithm: the procedure

1. Initialize parameters 𝜃(1)

2. For 𝑛 = 1,2,…:

• E-step: for each example 𝑖, evaluate 𝑃 𝑧 𝑥𝑖; 𝜃
(𝑛)

(This is for calculating 𝑄 𝜃; 𝜃 𝑛 = σ𝑖=1
𝑛 σ𝑧𝑃 𝑧 𝑥𝑖; 𝜃

(𝑛) ln
𝑃 𝑥𝑖,𝑧;𝜃

𝑃(𝑧∣𝑥𝑖;𝜃
(𝑛))

)

• M-step: 𝜃(𝑛+1) ← argmax𝜃 𝑄(𝜃; 𝜃
𝑛 )

• Check convergence of either log-likelihood or parameters; if yes, return

• Monotone improvement guarantee: ℒ 𝜃 𝑛 = 𝑄 𝜃 𝑛 , 𝜃 𝑛 ≤ 𝑄 𝜃 𝑛+1 , 𝜃 𝑛 ≤ ℒ 𝜃 𝑛+1
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EM algorithm: application to GMMs

• Recall: latent variable 𝑘 (cluster membership), parameters 𝜃 = 𝜋, 𝜇, Σ

• The E-step: 

• for each example 𝑖, evaluate 𝑃 𝑘𝑖 𝑥𝑖; 𝜃 for 𝜃 = 𝜃(𝑛)

• 𝑃 𝑘𝑖 = 𝑘 𝑥𝑖; 𝜃 =
𝑃(𝑘𝑖=𝑘, 𝑥𝑖;𝜃)

𝑃(𝑥𝑖;𝜃)
=

𝜋𝑘𝑁(𝑥𝑖;𝜇𝑘,Σ𝑘)

σ𝑐=1
𝐾 𝜋𝑐𝑁(𝑥𝑖;𝜇𝑐,Σ𝑐)

=:𝛾𝑖𝑘

• 𝛾𝑖𝑘: the responsibility component 𝑘 has for generating 𝑥𝑖

Conceptually, 𝛾𝑖𝑘 can be thought of as

o soft cluster membership

o “pseudo-count” of data point (𝑥𝑖 , 𝑘)
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EM algorithm: application to GMMs (cont’d)

• The M-step:

𝜃(𝑛+1) ← argmax𝜃 𝑄(𝜃; 𝜃
𝑛 ), 

where 𝑄 𝜃; 𝜃 𝑛 = σ𝑖=1
𝑛 σ𝑘 𝑃 𝑘𝑖 = 𝑘 𝑥𝑖; 𝜃

(𝑛) ln
𝑃 𝑥𝑖,𝑘;𝜃

𝑃(𝑘∣𝑥𝑖;𝜃
(𝑛))

This is equivalent to argmax𝜃 σ𝑖=1
𝑛 σ𝑘 𝛾𝑖𝑘 ln 𝑃 𝑥𝑖, 𝑘𝑖 = 𝑘; 𝜃

• Can view the above as the log-likelihood of weighted dataset 𝑥𝑖, 𝑘 , 𝛾𝑖𝑘 𝑖∈ 𝑛 ,𝑘∈[𝐾]

• Using MLE for GMM with fully-observed data (recall slide 7), we have: 

𝜋𝑘 =
𝑛𝑘

𝑛
, where 𝑛𝑘 = σ𝑖=1

𝑛 𝛾𝑖𝑘
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EM algorithm: application to GMMs (cont’d)

• M-step

argmax𝜃 σ𝑖=1
𝑛 σ𝑘 𝛾𝑖𝑘 ln 𝑃 𝑥𝑖 , 𝑘𝑖 = 𝑘; 𝜃

What about optimal 𝜇, Σ ? 

(Previously)

𝜇𝑘 =
1

𝑛𝑘
σ𝑖:𝑘𝑖=𝑘

𝑥𝑖

Σ𝑘 =
1

𝑛𝑘
σ𝑖:𝑘𝑖=𝑘

𝑥𝑖 − 𝜇𝑘 𝑥𝑖 − 𝜇𝑘
⊤

(Now, for optimizing 𝑄 𝜃; 𝜃 𝑛 )

𝜇𝑘 =
σ𝑖 𝛾𝑖𝑘 𝑥𝑖

σ𝑖 𝛾𝑖𝑘

Σ𝑘 =
σ𝑖 𝛾𝑖𝑘 𝑥𝑖−𝜇𝑘 𝑥𝑖−𝜇𝑘

⊤

σ𝑖 𝛾𝑖𝑘
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EM in action
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EM for GMM: 1-slide summary

• Initialize: 𝜋 ∈ Δ𝐾 , 𝜇𝑘 ∈ ℝ𝑑 , Σ𝑘 ∈ ℝ𝑑×𝑑
𝑘=1
𝐾

• (E)xpectation step: for every 𝑖, 𝑘:

• 𝛾𝑖𝑘 =
𝜋𝑘 𝑝 𝑥𝑖 𝑧𝑖=𝑘)

σ
𝑘′=1
𝐾 𝜋𝑘′ 𝑝 𝑥𝑖 𝑧𝑖=𝑘′)

• Let 𝑛𝑘 = σ𝑖=1
𝑛 𝛾𝑖𝑘

• (M)aximization step: for every 𝑘:

• 𝜇𝑘
′ =

1

𝑛𝑘
σ𝑖=1
𝑛 𝛾𝑖𝑘𝑥𝑖

• Σ𝑘
′ =

1

𝑛𝑘
σ𝑖=1
𝑛 𝛾𝑖𝑘 𝑥𝑖 − 𝜇𝑘

′ 𝑥𝑖 − 𝜇𝑘
′ ⊤

• 𝜋𝑘
′ =

𝑛𝑘

𝑛

• Set 𝜇𝑘 ← 𝜇𝑘
′ , Σ𝑘 ← Σ𝑘

′ , 𝜋𝑘 ← 𝜋𝑘
′ ,

• Stop when: the log likelihood does not increase much or the parameters do not change much.
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note we use 𝜇𝑘
′ rather than 𝜇𝑘



Midterm exam: summary

• My suggestion: demonstrating clarity on basic concepts / definitions >> calculations

• If you are on a right track to solve a question, I am usually generous in giving partial credits
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Tips

• Stopping criteria:

• Likelihood-based: 
ℒ 𝜃′ −ℒ 𝜃

ℒ 𝜃
≤ 𝜖

• Parameter-based: 𝜇𝑘 − 𝜇𝑘
′ + Σ𝑘 − Σ𝑘

′
𝐹 + 𝜋𝑘 − 𝜋𝑘

′ ≤ 𝜖

• Initialization of  𝜋, 𝜇, Σ

• E.g. 𝜋 ←
1

𝐾
, … ,

1

𝐾
, 𝜇 ←cluster centers of Lloyd’s algorithm, Σ = I

• Beware of pitfalls
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Pitfalls

• Maximum likelihood of GMM can result in severe overfitting

• In the log-likelihood expression σ𝑖=1
𝑛 ln 𝑃 𝑥𝑖; 𝜃 ,

it is possible to set 𝜃 so that:

for one example 𝑖, ln 𝑃 𝑥𝑖; 𝜃 is arbitrarily large

• Imagine Gaussian MLE on one data point:

max
𝜇,𝜎2

ln 𝑁 𝑥1; 𝜇, 𝜎
2 = max

𝜇,𝜎2
ln

1

2𝜋𝜎2
exp −

𝑥−𝜇 2

2𝜎2

• Solution: 

• Bayesian approach: instead of MLE
• Put a prior on Σ, e.g. Wishart distribution

• Compute maximum-a-posteriori (MAP) estimate

• Detect overly small Σ𝑘 and restart EM

19https://www2.karlin.mff.cuni.cz/~maciak/NMST539/cvicenie2018_4.html



Lloyd’s algorithm is EM in the limit
• Suppose we use EM for  maximize

𝜋, 𝜇,Σ
𝐿 𝜋, 𝜇, Σ , subject to:

for every 𝑘,

Σ𝑘 = 𝜖 ⋅ 𝐼 ∈ ℝ𝑑×𝑑 for some 𝜖 > 0

𝜋𝑘 =
1

𝐾

• Running the EM algorithm: 

• E-step: 

• 𝑝 𝑥 𝜇𝑘, Σ𝑘) ∝ exp −
1

2𝜖
𝑥 − 𝜇𝑘 2

2

• 𝛾𝑖𝑘 =
𝜋𝑘 exp −

𝑥𝑖−𝜇𝑘
2

2𝜖

σ
𝑘′=1
𝐾 𝜋𝑘′ exp −

𝑥𝑖−𝜇𝑘′
2

2𝜖

• Imagine 𝐾 = 2

20

(fix Σ𝑘 , 𝜋 throughout -- do not update them)



Lloyd’s algorithm is EM in the limit

• Initialize: 𝜋 ∈ Δ𝐾 , 𝜇𝑘 ∈ ℝ𝑑 , Σ𝑘 ∈ ℝ𝑑×𝑑
𝑘=1
𝐾

• (E)xpectation step:

• 𝛾𝑖𝑘 =
𝜋𝑘 𝑝 𝑥𝑖 𝑧𝑖=𝑘)

σ
𝑘′=1
𝐾 𝜋𝑘′ 𝑝 𝑥𝑖 𝑧𝑖=𝑘′)

• Let 𝑛𝑘 = σ𝑖=1
𝑛 𝛾𝑖𝑘

• (M)aximization step:

• 𝜇𝑘 =
1

𝑛𝑘
σ𝑖=1
𝑛 𝛾𝑖𝑘𝑥𝑖

• Σ𝑘 =
1

𝑛𝑘
σ𝑖=1
𝑛 𝛾𝑖𝑘 𝑥𝑖 − 𝜇𝑘 𝑥𝑖 − 𝜇𝑘

⊤

• 𝜋𝑘 =
𝑛𝑘

𝑛

• Stop when: the log likelihood does not increase much or parameter does not change much.
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𝛾𝑖𝑘 = 1 if 𝜇𝑘 is the cluster center closest to 𝑥𝑖; 0 otherwise

count how many points assigned to the centroid 𝜇𝑘

Imagine 𝜋 = Uniform, Σ𝑘 =
1

𝜖
𝐼 with a very small 𝜖

update centroid 𝜇𝑘 as the mean of the points assigned to cluster 𝑘



Gaussian Mixture Models: additional remarks

• EM is not the only method that maximizes likelihood in GMMs

• E.g. can just gradient ascent on the likelihood function 

• Another popular approach: spectral methods 

• Key idea: use Method of Moments to estimate model parameters 

• Has provable guarantees when the model is ``well-specified’’ 

• Can be combined with EM

• Generally, stronger assumption on data generating process

=> easier to learn

22http://www.phillong.info/stoc13/stoc13_ml_sanjoy_dasgupta.pdf



EM as a generic tool: additional remarks

• EM is universal: any situation where you have latent variables.

• E-step: compute the posterior probability (=responsibilities) for the latent variables

• M-step: use the responsibilities as ‘soft membership’, and find parameters that maximize 
σ𝑗 𝑞 𝑧 = 𝑗 ⋅ ln(𝑝(𝑥, 𝑧 = 𝑗|𝜃)). I.e., weighted joint likelihood.

• Other popular examples:

• Semi-supervised learning
• Some labels are unobserved – the hidden labels are the 𝑧𝑖’s!

• Missing data

• Some features are often missing for various reason. (e.g., for survey, they just did not fill out)

• “Grading an example without an answer key” – CIML Sec 16.1

• Once you provide a generative model, you know how to apply EM
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Recap

• GMM: a generative model.

• Difference from supervised learning: we must infer the latent, unobserved variable.

• Connection to 𝑘-means and Lloyd’s algorithm

• The power of graphical models: specify reasonable generative model, and what you should do, 
ideally, is already well-defined. 

• The pain is in the computational complexity

• EM is one way to get around.

• Additional reading: Bishop, “Pattern Recognition and Machine Learning”, Chap. 9
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