CSC 580 Principles of Machine Learning

11 PGM: Gaussian mixture models; Expectation-Maximization (EM) algorithms

Chicheng Zhang

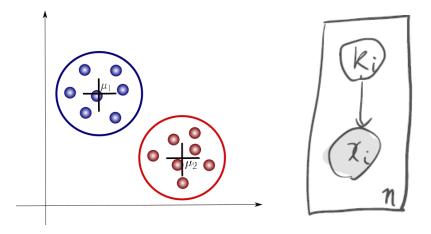
Department of Computer Science

*slides credit: built upon CSC 580 Fall 2021 lecture slides by Kwang-Sung Jun

1

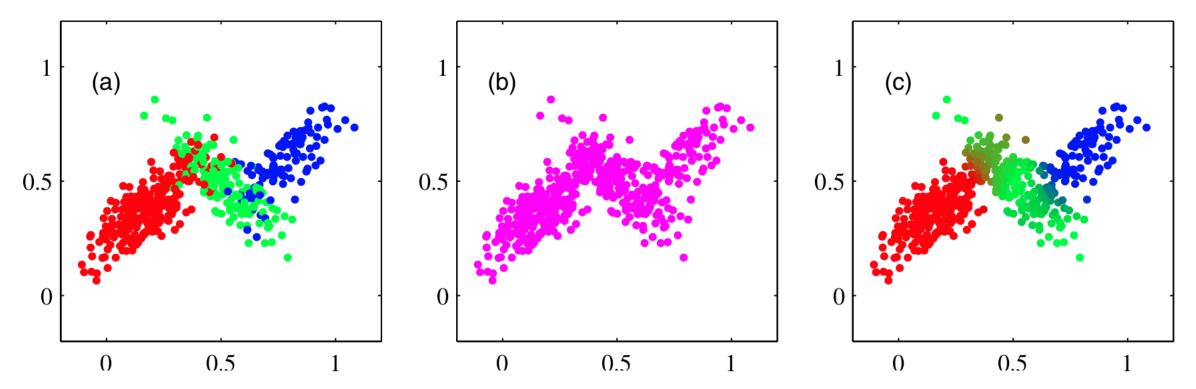
Gaussian mixture model (GMM) for clustering

- Clustering
- Data: $S = \{x_1, \dots, x_n\} \subset \mathbb{R}^d$
- Given: *K* the number of clusters.
- Generative story:
 - $k \sim \text{Categorical}(\pi)$ (*hidden*)
 - $x \mid k \sim N(\mu_k, \Sigma_k)$



- Maximum likelihood estimation: $\underset{\pi,\{\mu_k,\Sigma_k\}_{k=1}^K}{\operatorname{argmax}} \sum_i \log(\sum_{k=1}^K \pi_k p(x_i; \mu_k, \Sigma_k))$
 - How to solve it?
 - How do we get the cluster assignments?

Illustration



- Mixture of 3 Gaussians
- (a) is ground truth (we don't know this).
- (b) is what we see, (c) is what the algorithm can recover.

GMM for clustering: algorithms

• Maximum likelihood estimation

 $\underset{\pi,\{\mu_k,\Sigma_k\}_{k=1}^K}{\operatorname{argmax}} \sum_{i} \log(\sum_{k=1}^K \pi_k p(x_i; \mu_k, \Sigma_k))$

is (1) computationally hard (2) ill-posed (see later slides)

Journal of Machine Learning Research 18 (2018) 1-11

Submitted 12/16; Revised 12/16; Published 4/18

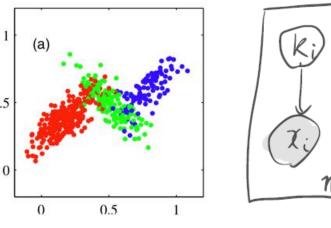
Maximum Likelihood Estimation for Mixtures of Spherical Gaussians is NP-hard

Christopher Tosh Sanjoy Dasgupta Department of Computer Science and Engineering University of California, San Diego La Jolla, CA 92093-0404, USA

CTOSH@CS.UCSD.EDU DASGUPTA@CS.UCSD.EDU

- How to design computationally efficient algorithms that can reasonably maximize the log-likelihood function?
- Observation: if for each data point *i*,

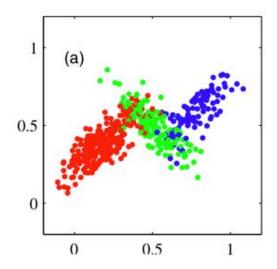
we not only have x_i but also have k_i , then MLE is easy to calculate 0.5



Warmup: MLE for GMM with known cluster membership

- Maximize likelihood ⇔ maximize log-likelihood
- $\max_{\pi,\{\mu,\Sigma\}} L(\pi,\{\mu,\Sigma\}) = \max_{\pi,\{\mu,\Sigma\}} \sum_{i} \log P(x_i,k_i;\pi,\{\mu,\Sigma\})$

$$= \max_{\pi,\{\mu,\Sigma\}} \left(\sum_{i} \log P(x_i \mid k_i; \{\mu, \Sigma\}) + \sum_{i} \log P(k_i; \pi) \right)$$
$$= \max_{\{\mu,\Sigma\}} \sum_{i} \log P(x_i \mid k_i; \{\mu, \Sigma\}) + \max_{\pi} \sum_{i} \log P(k_i; \pi)$$

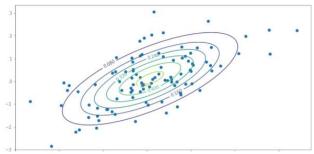


• maximize $\sum_{i} \log P(k_i; \pi) = \sum_{k=1}^{K} n_k \ln \pi_k$, where $n_k = \#\{i: k_i = k\}$ => $\pi_k = \frac{n_k}{n}$

•
$$\max_{\{\mu,\Sigma\}} \sum_{i} \log P(x_i \mid k_i; \{\mu, \Sigma\}) = \sum_{k} \max_{\mu_k, \Sigma_k} \sum_{i:k_i=k} \log P(x_i \mid k_i = k; \mu_k, \Sigma_k)$$

Warmup: MLE for GMM with known cluster membership (cont'd)

•
$$\max_{\mu_k, \Sigma_k} \sum_{i:k_i=k} \ln P(x_i \mid k_i = k; \mu_k, \Sigma_k)$$



- Simplified problem: $\max_{\mu,\Sigma} \sum_{i} \ln N(x_{i}; \mu, \Sigma)$, where *N* here denotes Gaussian pdf $N(x; \mu, \Sigma) = \frac{1}{\sqrt{(2\pi)^{d}|\Sigma|}} \exp\left(-\frac{1}{2}(x-\mu)^{T}\Sigma^{-1}(x-\mu)\right)$
- Observation 1: for any fixed Σ , the optimal μ is $\mu = \frac{1}{n} \sum_{i} x_{i}$ (Exercise)
- Observation 2: for any fixed μ , the optimal Σ is such that $\Lambda = \Sigma^{-1}$ equals

$$\underset{\Lambda}{\operatorname{argmax}} f(\Lambda) \coloneqq \frac{1}{2} \sum_{i} \ln|\Lambda| - \frac{1}{2} (x_{i} - \mu)^{\mathsf{T}} \Lambda(x_{i} - \mu)$$

• Fact: f is concave in Λ

•
$$\nabla f(\Lambda) = 0 \Rightarrow n\Lambda^{-1} - \sum_{i} (x_i - \mu) (x_i - \mu)^{\top} = 0 \Rightarrow \Sigma = \frac{1}{n} \sum_{i} (x_i - \mu) (x_i - \mu)^{\top}$$

https://www.youtube.com/watch?v=jAyTgkiaBbY

Warmup: MLE for GMM with known cluster membership (cont'd)

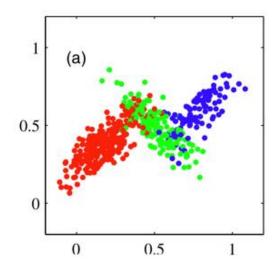
• In summary, for every k, the solution of

$$\max_{\mu_k, \Sigma_k} \sum_{i:k_i=k} \ln P(x_i \mid k_i = k; \mu_k, \Sigma_k)$$

is given by:

$$\mu_k = \frac{1}{n_k} \sum_{i:k_i=k} x_i$$

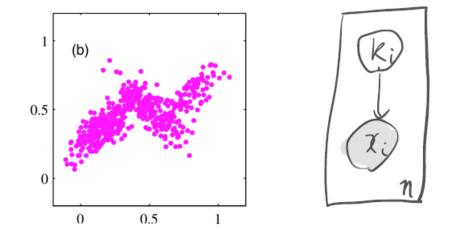
$$\Sigma_k = \frac{1}{n_k} \sum_{i:k_i=k} (x_i - \mu_k) (x_i - \mu_k)^{\mathsf{T}}$$



• Also, recall that for every k, the optimal $\pi_k = \frac{n_k}{n}$

GMM for clustering: algorithms

- What is the cluster memberships are unknown?
- This is generally known as the *latent variable* issue



- Expectation-Maximization (EM) algorithm (Dempster et al, 1977) provides a *general* approach for approximate MLE for probabilistic models with latent variables
 - Has wide applications well-beyond GMMs
- High-level idea: *reduce* to MLE for fully-observed probabilistic models

EM algorithm: high-level idea

• Given: a probabilistic model $P(x, z; \theta)$,

with x being the observed part, z being the latent part

- Would like to maximize the log-likelihood on the observed data: $\ln P(x; \theta) = \ln \sum_{z} P(x, z; \theta)$
- Maximizing $\ln \sum_{z} P(x, z; \theta)$ is intractable => instead, maximize a lower bound of it $\ln P(x; \theta) = \ln \sum_{z} P(x, z; \theta) = \ln \sum_{z} P(z \mid x; \theta') \cdot \frac{P(x, z; \theta)}{P(z \mid x; \theta')}$

 $\geq \sum_{z} P(z \mid x; \theta') \ln \frac{P(x, z; \theta)}{P(z \mid x; \theta')} \quad \text{(Jensen's inequality & concavity of } \ln x\text{)}$

• With *n* iid samples

$$\sum_{i=1}^{n} \ln P(x_i; \theta) \ge \sum_{i=1}^{n} \sum_{z} P(z \mid x_i; \theta') \ln \frac{P(x_i, z; \theta)}{P(z \mid x_i; \theta')}$$

$$\mathcal{L}(\theta) \qquad \qquad Q(\theta; \theta')$$

EM algorithm: high-level idea

- Can be viewed as the log-likelihood of model θ on a "soft" set of *fully-observed* data
- The lower bound approximate $Q(\theta; \theta')$ is sometimes tight
 - At $\theta = \theta'$, $Q(\theta'; \theta') = \mathcal{L}(\theta')$
 - For general θ , $\mathcal{L}(\theta) Q(\theta; \theta') = \sum_{i=1}^{n} \text{KL}(P(z \mid x_i; \theta'), P(z \mid x_i; \theta)) \ge 0$
- Kullback-Leibler (KL) divergence: $KL(p,q) = E_{z \sim p} ln \frac{p(z)}{q(z)}$
- Properties: $KL(p||q) \ge 0$, for all p,q; KL(q||q) = 0, for all q

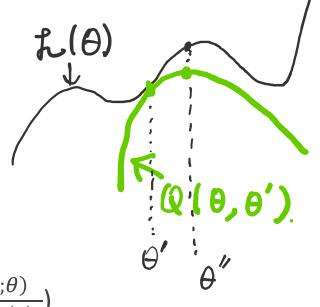
 $L(\theta)$

EM algorithm: the procedure

- 1. Initialize parameters $\theta^{(1)}$
- 2. For n = 1, 2, ...:
 - E-step: for each example *i*, evaluate $P(z | x_i; \theta^{(n)})$

(This is for calculating
$$Q(\theta; \theta^{(n)}) = \sum_{i=1}^{n} \sum_{z} P(z \mid x_i; \theta^{(n)}) \ln \frac{P(x_i, z; \theta)}{P(z \mid x_i; \theta^{(n)})}$$
)

- M-step: $\theta^{(n+1)} \leftarrow \operatorname{argmax}_{\theta} Q(\theta; \theta^{(n)})$
- Check convergence of either log-likelihood or parameters; if yes, return
- Monotone improvement guarantee: $\mathcal{L}(\theta^{(n)}) = Q(\theta^{(n)}, \theta^{(n)}) \leq Q(\theta^{(n+1)}, \theta^{(n)}) \leq \mathcal{L}(\theta^{(n+1)})$



EM algorithm: application to GMMs

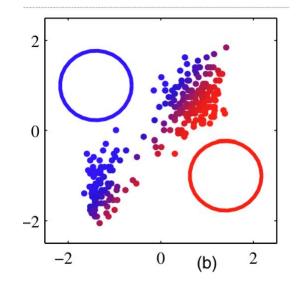
- Recall: latent variable k (cluster membership), parameters $\theta = (\pi, \{\mu, \Sigma\})$
- The E-step:
 - for each example *i*, evaluate $P(k_i | x_i; \theta)$ for $\theta = \theta^{(n)}$

•
$$P(k_i = k \mid x_i; \theta) = \frac{P(k_i = k, x_i; \theta)}{P(x_i; \theta)} = \frac{\pi_k N(x_i; \mu_k, \Sigma_k)}{\sum_{c=1}^K \pi_c N(x_i; \mu_c, \Sigma_c)} =: \gamma_{ik}$$

• γ_{ik} : the *responsibility* component k has for generating x_i

Conceptually, γ_{ik} can be thought of as

- \circ soft cluster membership
- \circ "pseudo-count" of data point (x_i , k)



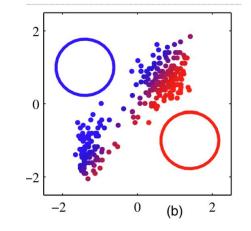
EM algorithm: application to GMMs (cont'd)

• The M-step:

$$\theta^{(n+1)} \leftarrow \operatorname{argmax}_{\theta} Q(\theta; \theta^{(n)}),$$

where $Q(\theta; \theta^{(n)}) = \sum_{i=1}^{n} \sum_{k} P(k_i = k \mid x_i; \theta^{(n)}) \ln \frac{P(x_i, k; \theta)}{P(k|x_i; \theta^{(n)})}$

This is equivalent to $\operatorname{argmax}_{\theta} \sum_{i=1}^{n} \sum_{k} \gamma_{ik} \ln P(x_i, k_i = k; \theta)$



- Can view the above as the log-likelihood of weighted dataset $\{(x_i, k), \gamma_{ik}\}_{i \in [n], k \in [K]}$
- Using MLE for GMM with fully-observed data (recall slide 7), we have:

$$\pi_k = \frac{n_k}{n}$$
, where $n_k = \sum_{i=1}^n \gamma_{ik}$

EM algorithm: application to GMMs (cont'd)

• M-step

$$\operatorname{argmax}_{\theta} \sum_{i=1}^{n} \sum_{k} \gamma_{ik} \ln P(x_i, k_i = k; \theta)$$

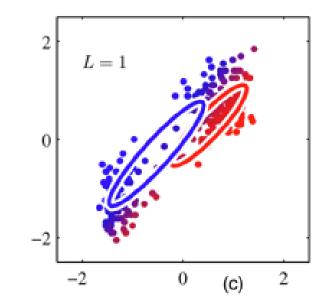
What about optimal $\{\mu, \Sigma\}$?

(Previously)

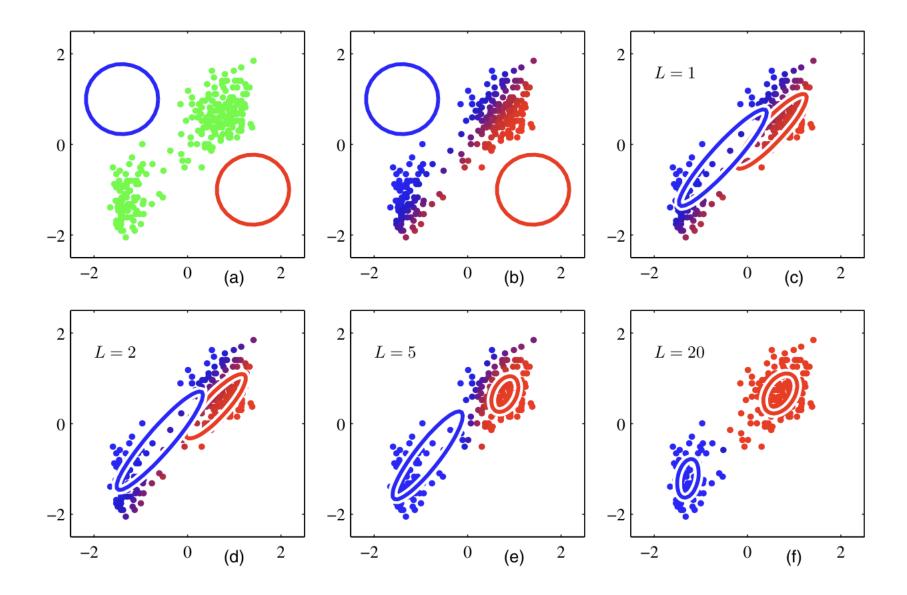
$$\mu_{k} = \frac{1}{n_{k}} \sum_{i:k_{i}=k} x_{i}$$

$$\Sigma_{k} = \frac{1}{n_{k}} \sum_{i:k_{i}=k} (x_{i} - \mu_{k}) (x_{i} - \mu_{k})^{\mathsf{T}}$$
(Now, for optimizing $Q(\theta; \theta^{(n)})$)
$$\mu_{k} = \frac{\sum_{i} \gamma_{ik} x_{i}}{\sum_{i} \gamma_{ik}}$$

$$\Sigma_{k} = \frac{\sum_{i} \gamma_{ik} (x_{i} - \mu_{k}) (x_{i} - \mu_{k})^{\mathsf{T}}}{\sum_{i} \gamma_{ik}}$$



EM in action



EM for GMM: 1-slide summary

- Initialize: $\pi \in \Delta^{K}$, $\{\mu_k \in \mathbb{R}^d, \Sigma_k \in \mathbb{R}^{d \times d}\}_{k=1}^{K}$
- (E)xpectation step: for every *i*, *k*:

•
$$\gamma_{ik} = \frac{\pi_k p(x_i \mid z_i = k)}{\sum_{k'=1}^{K} \pi_{k'} p(x_i \mid z_i = k')}$$

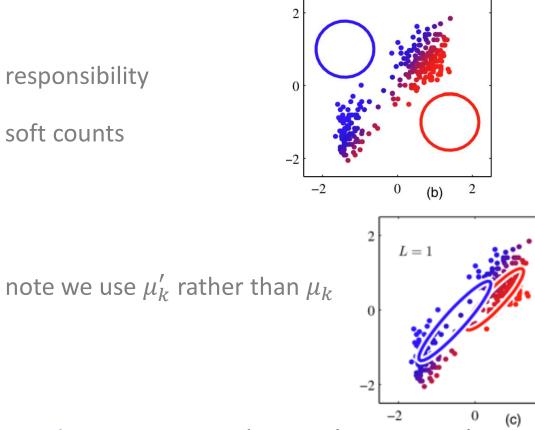
• Let $n_k = \sum_{i=1}^{n} \gamma_{ik}$

• (M)aximization step: for every k:

•
$$\mu'_k = \frac{1}{n_k} \sum_{i=1}^n \gamma_{ik} x_i$$

• $\Sigma'_k = \frac{1}{n_k} \sum_{i=1}^n \gamma_{ik} (x_i - \mu'_k) (x_i - \mu'_k)^\top$
• $\pi'_k = \frac{n_k}{n}$

• Set $\mu_k \leftarrow \mu'_k$, $\Sigma_k \leftarrow \Sigma'_k$, $\pi_k \leftarrow \pi'_k$,



Midterm exam: summary

- My suggestion: demonstrating clarity on basic concepts / definitions >> calculations
- If you are on a right track to solve a question, I am usually generous in giving partial credits

Tips

- Stopping criteria:
 - Likelihood-based: $\frac{|\mathcal{L}(\theta') \mathcal{L}(\theta)|}{|\mathcal{L}(\theta)|} \leq \epsilon$
 - Parameter-based: $\|\mu_k \mu'_k\| + \|\Sigma_k \Sigma'_k\|_F + \|\pi_k \pi'_k\| \le \epsilon$
- Initialization of π , { μ , Σ }

• E.g.
$$\pi \leftarrow \left(\frac{1}{K}, \dots, \frac{1}{K}\right), \mu \leftarrow \text{cluster centers of Lloyd's algorithm, } \Sigma = I$$

• Beware of pitfalls

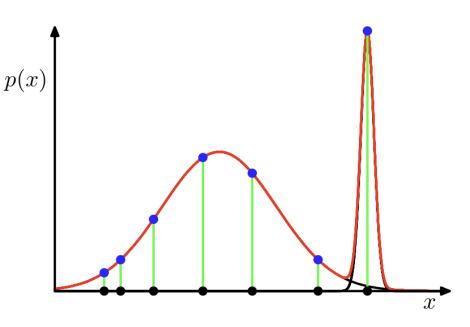
Pitfalls

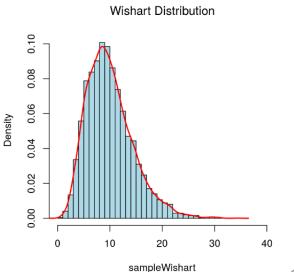
- Maximum likelihood of GMM can result in severe overfitting
- In the log-likelihood expression ∑_{i=1}ⁿ ln P(x_i; θ), it is possible to set θ so that:
 for one example i, ln P(x_i; θ) is arbitrarily large
- Imagine Gaussian MLE on one data point:

$$\max_{\mu,\sigma^2} \ln N(x_1;\mu,\sigma^2) = \max_{\mu,\sigma^2} \ln \left(\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \right)$$

- Solution:
 - Bayesian approach: instead of MLE
 - Put a prior on Σ , e.g. Wishart distribution
 - Compute maximum-a-posteriori (MAP) estimate
 - Detect overly small Σ_k and restart EM

https://www2.karlin.mff.cuni.cz/~maciak/NMST539/cvicenie2018_4.html





Lloyd's algorithm is EM in the limit

• Suppose we use EM for $\max_{\pi,\{\mu,\Sigma\}} L(\pi,\{\mu,\Sigma\})$, subject to:

for every k,

$$\Sigma_k = \epsilon \cdot I \in \mathbb{R}^{d \times d} \text{ for some } \epsilon > 0$$
$$\pi_k = \frac{1}{K}$$

• Running the EM algorithm:

(fix Σ_k , π throughout -- do not update them)

• E-step:

•
$$p(x \mid \mu_k, \Sigma_k) \propto \exp\left(-\frac{1}{2\epsilon} \mid \mid x - \mu_k \mid \mid_2^2\right)$$

• $\gamma_{ik} = \frac{\pi_k \exp\left(-\frac{\left\|x_i - \mu_k\right\|^2}{2\epsilon}\right)}{\sum_{k'=1}^{K} \pi_{k'} \exp\left(-\frac{\left\|x_i - \mu_k\right\|^2}{2\epsilon}\right)}$

• Imagine K = 2

Lloyd's algorithm is EM in the limit

- Initialize: $\pi \in \Delta^{K}$, $\{\mu_{k} \in \mathbb{R}^{d}, \Sigma_{k} \in \mathbb{R}^{d \times d}\}_{k=1}^{K}$ Imagine $\pi = \text{Uniform}, \Sigma_{k} = \frac{1}{\epsilon}I$ with a very small ϵ
- (E)xpectation step:

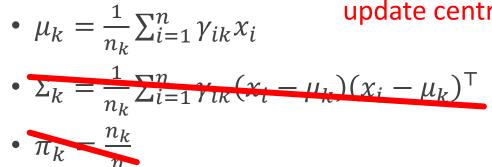
•
$$\gamma_{ik} = \frac{\pi_k p(x_i \mid z_i = k)}{\sum_{k'=1}^{K} \pi_{k'} p(x_i \mid z_i = k')}$$

• Let $n_k = \sum_{i=1}^n \gamma_{ik}$

 $\gamma_{ik} = 1$ if μ_k is the cluster center closest to x_i ; 0 otherwise

count how many points assigned to the centroid μ_k

• (M)aximization step:



update centroid μ_k as the mean of the points assigned to cluster k

• Stop when: the log likelihood does not increase much or parameter does not change much.

Gaussian Mixture Models: additional remarks

- EM is not the only method that maximizes likelihood in GMMs
 - E.g. can just gradient ascent on the likelihood function

Gradient-Based Training of Gaussian Mixture Models for High-Dimensional Streaming Data

Alexander Gepperth¹ · Benedikt Pfülb¹

Accepted: 15 July 2021 / Published online: 17 August 2021 © The Author(s) 2021

- Another popular approach: spectral methods
 - Key idea: use *Method of Moments* to estimate model parameters
 - Has provable guarantees when the model is ``well-specified"
 - Can be combined with EM

Spectral Methods meet EM: A Provably Optimal Algorithm for Crowdsourcing

Yuchen Zhang, Xi Chen, Dengyong Zhou, Michael I. Jordan

• Generally, stronger assumption on data generating process

=> easier to learn

http://www.phillong.info/stoc13/stoc13_ml_sanjoy_dasgupta.pdf

Algorithms that assume a certain amount of separation:

EM as a generic tool: additional remarks

- EM is universal: any situation where you have latent variables.
 - E-step: compute the posterior probability (=responsibilities) for the latent variables
 - M-step: use the responsibilities as 'soft membership', and find parameters that maximize $\sum_j q(z = j) \cdot \ln(p(x, z = j | \theta))$. I.e., weighted joint likelihood.
- Other popular examples:
 - Semi-supervised learning
 - Some labels are unobserved the hidden labels are the z_i 's!
- Missing data
 - Some features are often missing for various reason. (e.g., for survey, they just did not fill out)
 - "Grading an example without an answer key" CIML Sec 16.1
 - Once you provide a generative model, you know how to apply EM

Recap

- GMM: a generative model.
- Difference from supervised learning: we must infer the latent, unobserved variable.
- Connection to k-means and Lloyd's algorithm
- The power of graphical models: specify reasonable generative model, and what you should do, ideally, is already well-defined.
 - The pain is in the computational complexity
 - EM is one way to get around.
- Additional reading: Bishop, "Pattern Recognition and Machine Learning", Chap. 9