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Gaussian mixture model (GMM) for clustering

Clustering

Data: S = {x4, ..., x,,} € R?

Given: K - the number of clusters.

Generative story:
e k ~ Categorical(m) (hidden)
* x|k~ N(ug,Zy)

Maximum likelihood estimation: argmax Y;log(Xx_1 7, p(xi; i Zi))
i Tk e

* How to solve it?
* How do we get the cluster assignments?



Illustration
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* Mixture of 3 Gaussians
e (a) is ground truth (we don’t know this).

e (b) is what we see, (c) is what the algorithm can recover.



GMM for clustering: algorithms
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* How to design computationally efficient algorithms that can reasonably maximize the log-likelihood
function?

e Observation: if for each data point i,

we not only have x; but also have k;, then MLE is easy to calculate s
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Warmup: MLE for GMM with known cluster membership

* Maximize likelihood & maximize log-likelihood

T[){”;Z} 7‘[,{”,2}
= max, (XilogP(x; | ki {u, 2}) + X log P(k;; ) 0

= max 2ilog P(x; | ki;{p, 2}) + max Y;log P(k;; )
n s

0 0:5 l
 maximize Y;logP(k;;m) = Y h_iny Inmy, where ny, = #{i: k; = k}
T

n
=>7Tk=7k

* max Y;logP(x; | ki {w,2}) = Xp max ¥ = log P(x; | ky = ke py, )
{u,z} Ui Zk '



Warmup: MLE for GMM with known cluster membership (cont’d)

mMax Y.k, =k INP(x; | ki = ks phye, Zye )
ﬂk'zk

Simplified problem: m%xzi In N(x;; u,X), where N here denotes Gaussian pdf |
i,

NG %) = —mexp (=5 (0 = )27 (2 = )

Observation 1: for any fixed X, the optimal pis u = %Zi x; (Exercise)

Observation 2: for any fixed y, the optimal £ is such that A = £~ equals
1 1
argmax £ (A) = % nlA| = (x; = 1) TAGe; = )

* Fact: f is concave in A
_ 1
c VFA) =0=2nA" =Yy —wx — ) =02 = ~ (o — ) (x; = w'

https://www.youtube.com/watch?v=jAyTgkiaBbY



Warmup: MLE for GMM with known cluster membership (cont’d)

* In summary, for every k, the solution of

ﬂk!zk .
L:ki=

max Z InP(x; | ki = k; pg, Zy )
Kk

0.5
is given by:

1
- z: . 0
Hi np i:kj=k Xi
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1
Xy = n—kZi:ka(xi — ) (e — ) '

* Also, recall that for every k, the optimal 7, = %



GMM for clustering: algorithms

* What is the cluster memberships are unknown?

0.5

* This is generally known as the latent variable issue
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* Expectation-Maximization (EM) algorithm (Dempster et al, 1977) provides a general approach for
approximate MLE for probabilistic models with latent variables

* Has wide applications well-beyond GMMs

* High-level idea: reduce to MLE for fully-observed probabilistic models



EM algorithm: high-level idea

Given: a probabilistic model P(x, z; 8),
with x being the observed part, z being the latent part

Would like to maximize the log-likelihood on the observed data: In P(x;0) =1n ), P(x,z;6)

Maximizing In ),, P(x, z; 8) is intractable => instead, maximize a lower bound of it

P(x,z;0)
P(zlx;6"

InP(x;0) =1In Y,P(x,z,0) =In),P(z|x;6") -

P(x,z;0)

> P(zl|x;0 )lnp(zpc;e')

(Jensen’s inequality & concavity of In x)

With n iid samples

i InP(x;60) =22, P(z]x;0")In
l | |

| |
L(0) JCHD

P(x;,z;0)
P(lei;el)|




EM algorithm: high-level idea

P(x;,z;0)
P(lei;9|’)

PInPx;0) =31 Y, P(z1x;60")In
l | |

| |
L(0) Q(0;6")

Why optimizing Q(6; 0")?
e Can be viewed as the log-likelihood of model 6 on a “soft” set of fully-observed data

The lower bound approximate Q(8; 6') is sometimes tight
« At6 =6,0(00";8") =L(0)
* Forgeneral 8, L(8) —Q(0;0') = Y-, KL(P(Z | x;;0"),P(z | x; 8)) >0

p(2)
z~pID q(2)

Properties: KL(p||lg) = 0, for all p,q; KL(g||q) = 0, for all g

Kullback-Leibler (KL) divergence: KL(p,q) = E
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EM algorithm: the procedure

1. |Initialize parameters (1)

2. Forn=1,2, ...

e E-step: for each example i, evaluate P(Z | x;; 5("))

P(x;,z;0) ) 9
P(zlx;;0(M)

(This is for calculating Q(H; 9(")) = Z’{‘lezP(z | x; 0 ) In

e M-step: 0("*D « argmaxy Q(6; ™)

* Check convergence of either log-likelihood or parameters; if yes, return

* Monotone improvement guarantee: L(H(”)) = Q(H(”),H(”)) < Q(H("“),H(")) < L(H("“))
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EM algorithm: application to GMMs

 Recall: latent variable k (cluster membership), parameters 68 = (m, {u, X})

* The E-step:
« for each example i, evaluate P(k; | x;;6) for8 = 6™

P(ki=k xi;0) _ _ TkNXiHiZk) .
P(x;;6) YK TeN(pues) K

® P(kl=k|xl,9)=

* yir: the responsibility component k has for generating x;

Conceptually, ¥;; can be thought of as
o soft cluster membership
o “pseudo-count” of data point (x;, k)
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EM algorithm: application to GMMs (cont’d)

* The M-step:
61 « argmaxy Q(6;0™),
P(xi,k;6) ? .
where Q(8;6™)) = XL, Xy P(ki = k | x;;00) lnp(ki;i;e(n>) O -':i"il-f:
0 . 4 &
¥ O
This is equivalent to argmaxg Y./ Y. Vi In P(x;, ki = k; 6) A
-2 0 (b) 2

 Can view the above as the log-likelihood of weighted dataset {(x;, k),yik}ie[n],ke[,(]

e Using MLE for GMM with fully-observed data (recall slide 7), we have:

__ Nk — \'n
My =, wheren, = )i—1 Vik
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EM algorithm: application to GMMs (cont’d)

* M-step
argmaxg Yi—1 2 Vir In P(x;, k; = k; 6)
What about optimal {u, X}?

(Previously)

1
He = n_kzi:ki=k Xi

1
Lk = kZi:kl:k(xi — ) (e — ) ' 2

n

N (n) | s 5
(Now, for optimizing Q(8; 6™)) ﬂ‘
e S

_ XiVik X 0

Hie Zi Vik 3.
‘

» :Zi]/ik(xi—ﬂk)(xi—ﬂk)T
f Zi Yik
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EM In action
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EM for GMM: 1-slide summary

Initialize: T € AX, {u, € R%, %, € RX4IX_

(E)xpectation step: for every i, k:
Tt p(xi | zi=k)

responsibility d -ﬁ‘

[ ] . f— 0 ©
Vix Yoy T DO | Zi=K1) wihee ‘-’-‘O
) - n ° o
Let n, = Xiq Vik soft counts } g
(M)aximization step: for every k: ) 0 © 2
[ ] / f— 1 n
He = 5 ai=1VikXi 2 e
_ sem
ey = Lyn ! '\T note we use i, rather than u 3y
k= q Ai=1 Vire i — ) (g — ) k koo _ ’/.
[ = g
/ ng
° T[k — 7 %:,"
o Set u, <« Uy, Zp <2 « m, -
LUk < Hiy 2k ko T < T ; N
- T

Stop when: the log likelihood does not increase much or the parameters do not change much.
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Midterm exam: summary

Review Grades for Midterm exam @® REGRADE REQUESTS OPEN @ GRADES PUBLISHED

MINIMUM MEDIAN MAXIMUM MEAN STDDEV @
36.0 70.0 97.5 63.84 18.88

* My suggestion: demonstrating clarity on basic concepts / definitions >> calculations

 If you are on a right track to solve a question, | am usually generous in giving partial credits
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Tips

* Stopping criteria:

£(0)-£(0)] _
1L(6)] o

 Parameter-based: ||y — |l + 12k — Zpllp + |l — |l < €

e Likelihood-based:

€

* Initialization of m, {u, X}
1

e Eg. M« (E’ ...,%), u «cluster centers of Lloyd’s algorithm, X =1

* Beware of pitfalls
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Pitfalls ) :

p(x)

 Maximum likelihood of GMM can result in severe overfitting
* In the log-likelihood expression },;-; In P(x;; 8),
it is possible to set 6 so that:

for one example i, In P(x;; 0) is arbitrarily large

* Imagine Gaussian MLE on one data point:

2
max ln N X1 (0} = Imax ln ex (— ) Wishart Distribution

e Solution:
* Bayesian approach: instead of MLE
e Putaprioron X, e.g. Wishart distribution
* Compute maximum-a-posteriori (MAP) estimate

* Detect overly small X, and restart EM

|
B
et

Density

0.00 0.02 0.04 006 0.08 0.10

T T T \ 1
0 10 20 30 40

sampleWishart 19

https://www2.karlin.mff.cuni.cz/~maciak/NMST539/cvicenie2018_4.html



Lloyd’s algorithm is EM in the limit

* Suppose we use EM for maﬁir%%ze L(m,{u,X}), subject to:
(K,

for every k,

Y = €-1 € RY™*? for some e > 0

Ty, = —

K
* Running the EM algorithm: (fix X, T throughout -- do not update them)
* E-step:
1
+ p(x |, Zie) o< exp (= Ilx — e I13)
2
- exp<_||xi—zl:k|| )

* Yik = 2
lloc; = | )
2€

K

* Imagine K = 2
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Lloyd’s algorithm is EM in the limit

e Initialize: m € AKX, {ug € IR{d,ZL € RAXA}E_.
: . 1, .
Imagine m = Uniform, X, = ZI with a very small €

* (E)xpectation step:

* Yik = 5 Vi = 1if . is the cluster center closest to x;; 0 otherwise

N T D
 Letny, = Y Vik count how many points assigned to the centroid p

e (M)aximization step:
— 1 n
* Uk = np &i=1 YikXi

. I’ T

K — __ . —

ng L=

T~

e Stop when: the log likelihood does not increase much or parameter does not change much.

update centroid u; as the mean of the points assigned to cluster k



Gaussian Mixture Models: additional remarks

* EM is not the only method that maximizes likelihood in GMMSs  Gradient-Based Training of Gaussian Mixture Models for

. . . . : High-Dimensional Streaming Data
e E.g. can just gradient ascent on the likelihood function

Alexander Gepperth' (® - Benedikt Pfiilb’

Accepted: 15 July 2021 / Published online: 17 August 2021
2 The Author(s) 2021

e Another popular approach: spectral methods
» Key idea: use Method of Moments to estimate model parameters
* Has provable guarantees when the model is “"well-specified”
e Can be combined with EM
Spectral Methods meet EM: A Provably Optimal Algorithm for Crowdsourcing

Yuchen Zhang, Xi Chen, Dengyong Zhou, Michael |. Jordan

Algorithms that assume a certain amount of separation:

* Generally, stronger assumption on data generating process

=> easier to learn \/Ta \/Ta ¢Tz g
EM Vempala Hsu-Kakade

http://www.phillong.info/stoc13/stoc13_ml_sanjoy dasgupta.pdf 22



EM as a generic tool: additional remarks

* EM is universal: any situation where you have latent variables.
* E-step: compute the posterior probability (=responsibilities) for the latent variables

* M-step: use the responsibilities as ‘soft membership’, and find parameters that maximize
2.iq(z =j) -In(p(x,z = j|0)). l.e., weighted joint likelihood.

e Other popular examples:

* Semi-supervised learning
* Some labels are unobserved — the hidden labels are the z;’s!

* Missing data
* Some features are often missing for various reason. (e.g., for survey, they just did not fill out)
* “Grading an example without an answer key” — CIML Sec 16.1
* Once you provide a generative model, you know how to apply EM
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Recap

GMM: a generative model.

Difference from supervised learning: we must infer the latent, unobserved variable.

Connection to k-means and Lloyd’s algorithm

The power of graphical models: specify reasonable generative model, and what you should do,
ideally, is already well-defined.

* The pain is in the computational complexity
 EM is one way to get around.

Additional reading: Bishop, “Pattern Recognition and Machine Learning”, Chap. 9
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